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1. a)  

A generic large-area electronic structure is composed of (1) a substrate, (2) backplane electronics, (3) a 

frontplane, and (4) encapsulation.  

 

Backplanes provide or collect power and signal to or from front-planes. These may be passive or active. The 

ideal flexible active-matrix backplane should be rugged, rollable or bendable, capable of CMOS operation, and 

should lend itself to low-cost manufacturing. Today’s TFT backplane technologies are best described by their 

active semiconductor, which may be amorphous, nanocrystalline, or polycrystalline silicon, a II–VI compound 

semiconductor, or an organic semiconductor in polymer or molecular form. As thin-film semiconductor 

technologies develop away from glass substrates and toward flexible substrates, the backplanes differentiate 

further by the type of substrate. The substrate material defines a region of TFT fabrication conditions in 

temperature–time space. The maximum tolerable process temperature is set by the type of substrate materials: < 

300,< 600, and < 1,000oC for organic polymer, glass, and steel substrates, respectively.  

 

Frontplanes carry the specific optoelectronic application. The frontplane materials of displays include liquid 

crystals for transmissive displays, reflective-mode liquid crystals and electrophoretic foils for reflective 

displays, and OLEDs for emissive displays. The frontplane might also be an X-ray sensor, an image sensor, a 

pressure sensor, a chemical sensor, an actuator or an artificial muscle in a smart textile. 

 

b)  

The device islands are chemically bonded to a pre-strained substrate, while the interconnects are loosely bonded. 

When the pre-strain in the substrate is released, the interconnects buckle out of the surface and form arc-shaped 

structures. These wavy layouts can accommodate external deformations through changes in wavelength and 

amplitude. 

 

 

Figure 1: Schematic diagram of buckling mechanics 

 

For a stiff thin film ribbon a wavy profile forms, with the out-of-plane displacement being: 

 

                                         𝑤 = 𝐴/2 [ 1 +  cos (
2𝜋𝑥1

𝐿
)] 

 

Where x1 is the coordinate along the ribbon direction, A and L are the amplitude and the 

length of the buckled interconnection. 

 

Normally, under full strain  

𝑤 = 𝐴/2 [ 1 +  cos (
2𝜋𝑋

𝐿0
)] 

Where X = L0/2 and A= 2L0/π √𝜀 − 𝜀𝑐, with 𝜀𝑐 being the critical buckling strain. Of a doubly 

clamped ribbon. 

 

 



 

 

c) 

a) Students can choose the description of two of the following list of conducting materials deposited by 

low temperature: 

 

- Au evaporation 

- Organic conducting polymers 

- Nanomaterials (0D, 1D, 2D) 

 

The low temperature deposition approach has several advantages with respect to mechanical transfer and 

printing: 

 

–  wider variety of substrate materials available, including low-cost plastics, paper or tissue; 

–  lower thermal budget materials can be integrated in the process, such as adhesives, polymers, and 

biomaterials; 

–  thermal deformations of the substrate are reduced, and so is mechanical stress occurring due to mismatch 

between thermal expansion coefficients of the substrate and the films; 

–  materials science, device physics, fabrication process, and equipment are already well established, for 

example, in a-Si technology. 

For this approach due to the low maximum working temperatures of most low-cost plastics (the glass 

transition temperatures, Tg, in the range of 80 –150oC), the thermal budget in the fabrication process is 

limited within 100 – 150oC range.  

 
 

d) 

 

(i) Figure 1a) shows a pseudo-PMOS inverter composed by two p-type TFT transistors, with the load 

transistor connected as diode, i.e. the gate and drain contacts of the load transistor are short-

circuited. Figure 1b) shows a pseudo-PMOS inverter with the a zero-Vgs (or current source) load 

transistor, i.e. the gate and source contacts of the load transistor are short-circuited. A meaningful 

operation of the zero-Vgs inverter is obtained only when the load uses a depletion-mode transistor 

(i.e. VT ≥ 0 V for a p-type OTFT). In this case the effective gate-source voltage is nothing but the 

VT of the load transistor. As a result, zero-VGS load inverters are greatly influenced by the 

variations in VT . On the other hand, zero-VGS load acts as a constant current source that results in 

a large small-signal output resistance. Consequently, the gain of the inverter that uses a zero-VGS 

load is significantly larger. The load transistor, acting as a current source, operates in the sub- 

threshold regime producing a very low current, consequently the energy consumption is lower than 

in the diode-load configuration, but operates at lower speed. 

  In both cases the value of VPWR has a negative value (-VDD) in order to allow the circuit operating, and 

the same applies to Vin and Vout. 

Key differentiating aspects of the two configurations:  

Figure 1a) diode-load configuration.  

The key advantages of a diode load inverter are: 1) faster switching speed (attributed to the strong 

pull-down force of the diode-connected load transistor) and 2) robust to variations in the threshold 

voltage (VT).  

On the other hand, its key disadvantages are: 1) poor noise margin due to its asymmetric transfer 

characteristics; 2) greater power consumption as a result of the large pull-down current; 3) low 

output voltage swing; and 4) low gain. 

Figure 1b) Zero-Vgs load configuration 

Key advantages of the zero-Vgs load configuration are: 1) large output swing; 2) good noise 

margin; 3) lower power consumption; and 3) relatively large gain.  

On the other hand, its key disadvantages are: 1) slower switching speed; and 2) greater sensitivity 

to variations in the threshold voltage (VT ).  



(ii) Overlap capacitances, are parasitic capacitances formed across the interlayer dielectric between the 

source and drain contacts and the gate areas. The contact resistance is the series parasitic resistance 

experienced by the charges when flowing in and out of the channel through the source and drain 

contacts.  

Both parasitic parameters limit the switching speed of a thin film transistor, and can be modelled by 

modifying the effective channel length in the following formula of the cut-off frequency, from the ideal 

case:  

 

      𝑓𝑇 =
𝜇0𝑉𝐷𝑆

2𝜋𝐿2  

 

where 𝑓𝑇 is the cut-off frequency, 𝜇0 is the field effect mobility, 𝑉𝐷𝑆 is the drain-source voltage and L is 

the channel length, to the following one, including the length of the overlap capacitance Lo and the 

length of the source and drain contact areas LT.  

as represented in the figure below, in the case of a Bottom Gate, 

Where 𝑓𝑇 is the cut-off frequency, 𝜇0 is the field effect mobility, 𝑉𝐷𝑆 is the drain-source voltage and L is 

the channel length, as represented in the figure below, in the case of a Bottom Gate, Bottom Contact 

Thin Film Transistor device.  

When considering parasitic components in the device, such as contact resistance and overlap 

capacitance the actual equation assumes the following form: 

 

𝑓𝑇 =
𝜇0𝑉𝐷𝑆

2𝜋𝐿2
∙

𝐿

𝐿 + 𝐿0
∙

𝐿2

(𝐿 + 𝐿𝑇)2
 

 
Where the first correcting term 

𝐿

𝐿+𝐿0
 accounts for the effect of overlap capacitance (curve I in the graph of figure 

above), while the second term 
𝐿2

(𝐿+𝐿𝑇)2 accounts for the effect of contact resistance (curve II in the graph of figure 

above). 

 

 

Assessors comments: 

This set of questions did not require any numerical answer. Most of the students could answer the first three 

questions (standard bookwork) reasonably well. However, (d)i and d(ii) could not be answered correctly by the 

majority.  

  



2. a) 

 

In this model electrons in a solid behave like a gas. Each atom contributes one electron to the gas, and the 

electrons obey Fermi-Dirac statistics (i.e. this leads to the Fermi-Dirac electrons velocity distribution as opposite 

to Maxwell-Boltzmann distribution).  

 

The limitations are that this model cannot model the appearance of band gaps. Because the ions in a perfect 

crystal are in a regular periodic array, electrons in crystals can be studied by considering the problem of an 

electron in a periodic potential U(r) with the periodicity of the Bravais lattice, U(r+R)=U(r) for any Bravais 

lattice vector R.  

 

The Kronig-Penney model considers an additional periodic potential U(x,y,z), to the Schrodinger equation 

which represents the ionic charges of the crystal lattice. The Schrodinger equation in the 1D form can be then 

rewritten as 

 

 

 

 

 

Where U(r) has the periodicity of the Bravais lattice. The solutions to these equations are of the form: 

 

 

Where k is the wave vector, r is a position in the Bravais lattice and uk(r) is also a function with the periodicity 

of the Bravais lattice.  

 

Independent electrons obeying to the the general Schrӧdinger equation in a periodic potential are called Bloch’s 

electrons and follow the property below: 

 

The eigenstates ψ of the one-electron Hamiltonian H = - ħ2/2m + U(r), where U(r+R)=U(r) for all R in the 

Bravais lattice, can be chosen to have the form of a plane wave times a function with the periodicity of the 

Bravais lattice: 

 

ψnk(r) = eik r · unk(r) 

 

Where unk(r + R) = unk(r), implying that ψnk(r + R) = eik R · ψnk(r) 

This gives origin to a band-gap in the E vs k energy dispersion relation. 

    

 

 

b) 

 

Using the Child’s Law we have: 

 

   𝐽1 =
9𝜀𝑟𝜀0µ𝑒𝑓𝑓1𝑉2

8𝑑3   

𝐽2 =
9𝜀𝑟𝜀0µ𝑒𝑓𝑓2𝑉2

8𝑑3
 

 

Where 𝜇𝑒𝑓𝑓1 =
𝑛1−𝑛𝑡𝑟𝑎𝑝1

𝑛1
𝜇1=4.19999x10-8 m2 V-1 s-1;  and 𝜇𝑒𝑓𝑓2 =

𝑛2−𝑛𝑡𝑟𝑎𝑝2

𝑛2
𝜇2 = 8.68600x10-11 m2 V-1 s-1 

 

Substituting the effective mobility in the Child’s law equations we get J1=27.31 kA m-2 

 And J2= 56 A m-2. 

 

 

 

 

 

 

𝐻̂𝜓(𝒓) = (−
ħ2

2𝑚
∇2 + 𝑈(𝒓)) 𝜓(𝒓) = 𝐸𝜓(𝒓) 

𝜓𝑘(𝒓) = 𝑢𝑘(𝒓)exp (𝑖𝒌 ∙ 𝒓) 



 

 

c)  

 

 
 

 
 

Metal–oxide–semiconductor field-effect transistor (MOSFETs) are based on a rigid crystalline doped silicon 

wafer patterned with regions at different doping levels (n or p). MOSFETs generally operate in inversion 

condition, where a conducting channel is formed under the gate dielectric layer and it is controlled by the Vg. 

The conductivity of the channel is controlled by the source and drain wells.   

A MOSFET device architecture is characterized by: i) a p-doped or n-doped semiconducting substrate or well; 

ii) highly doped regions underneath the source and drain electrodes of different polarity than the substrate or 

well where the device is obtained, iii) a thin gate oxide (e.g. SiO2) in the active area between the source and 

drain electrodes and a gate electrode to generate a transversal electric field across the gate dielectric. This 

transversal electric field is responsible of the creation of an inversion region underneath the gate oxide which 

acts as a channel of opposite polarity than the well or substrate semiconductor where the device is obtained. As 

a consequence, by applying a potential difference between the drain and source, the corresponding electric 

charges are displaced throughout the channel and their rate is modulated through the potential difference 

between the gate and the well or the bulk substrate. 

 

 

A Thin Film Transistor (TFT) is a layered structure on a neutral (plastic or glass) support substrate.  A TFT is 

characterized by: a dielectric or intrinsic substrate where all active layers, including the semiconducting channel 

are deposited as thin film to form one of four possible staggered device architectures. More in details the 

following layers are deposited and patterned: i) source and drain contacts; ii) semiconducting channel, iii) gate 

dielectric, and iv) gate electrode. Their sequence can change according to different architectures of TFTs, e.g. 

bottom gate/bottom contacts (BGBC), bottom gate/top contacts (BGTC), top gate/bottom contacts (TGBC) or 

top gate/top contacts (TGTC). The gate dielectric layer is sandwiched between the gate electrode and a 

(generally amorphous or polycrystalline) thin semiconducting layer. TFTs normally operate in accumulation 

condition, whereby a concentration of charge carriers is accumulated at the semiconductor-insulator interface, 

thus determining the conductivity of the TFT channel. 

In the standard MOSFETs the drain-current equations, μFE is a proportionality factor that relates the drain 

current ID to the gate and drain voltages VGS and VDS, the threshold voltage Vt, the channel width W and 

length L, and the gate dielectric capacitance per unit area Cox. 

However, experimentally, the mobility in amorphous or organic TFTs is found to depend on VGS and VDS. 

Therefore, it is more straightforward to view it as a small-signal bias-dependent quantity, analogous to the 

small-signal gain of an amplifier rather than the large-signal quantity  

The Thin film technology is independent of the substrate which plays no role in the determination of the 

electrical properties of the TFT. 

 

 



 

d)  

Discussion about dimensionality affecting the electrical properties of electrodes .  

d=50um, Vscreen=0.2 m3, Kp=0.3, (η) max=300g/l 

𝑑 = 𝑉𝑠𝑐𝑟𝑒𝑒𝑛𝑘𝑝 φ/  =>  φ=0.25 

η = 1 + 2.5 φ + 6.2 φ2 = 2 

 

Assessors comments: 

A popular question. The majority of the students could correctly answer (a), (b) and (c). In particular, (b) was 

answered very well. However, many failed to highlight the key differences between TFTs and MOSFETs. The 

first part of (d) question was poorly done by most. The viscosity calculation part in (d) was correctly answered 

by the majority of the students.    

  



3.  a)  

The charge transport in conducting polymers is complex and can be modelled considering the band transport for 

intra polymer chains and hopping for both intrachain and interchain transport. 

If an electric field is applied, the polarons present in the polymer travel through the chain in the direction of the 

electric field. However, misalignment of the polymeric chain, the absence of pure crystalline polymers and the 

electric field and the scattering of polarons with phonons limits the band transport in conducting polymers. The 

latter factor originates a temperature dependence on the mobility which scales as form 𝜇 ∝ 𝑇−𝜈 where 1 < ν < 3. 

This dependence can be shown to derive directly from the Einstain relation 

 

𝜇 =
𝐷𝑒

𝑘𝐵𝑇
 

where the diffusion coefficient D=vλm might also be temperature dependant, where v is the drift velocity and λm 

is the mean free path. At higher temperatures more phonon modes are activated and the polarons will have a 

smaller mean free path. In conjugated polymers, for example, at temperature above the Debye temperature, the 

number of activated phonons increases linearly with temperature, more scattering is likely to occur, which gives 

rise to a D ∝ T-1 and thus µ which scales as T-2. 

 

b)  

The starting point of the band model is the Schrodinger equation which can be mathematically treated in 

different ways. The nearly-free electron model assumes that the ions (positive charges) in the crystal lattice 

behave as perturbations in the uniform field in which the electrons can move. 

. 

The vectors in the reciprocal lattice exist in the momentum space (or k-space) which is the set of all momentum 

vectors a particle can have. 

 

The electron’s wavefunction is an oscillating wave with momentum k. The electron energy is proportional to k2 

for free electrons, thus making it intuitive to plot E vs k.  

 

c)  

Components: 

A Indium Zinc Oxide (IZO) drain electrode; 

B Indium Zinc Oxide (IZO) source electrode 

C Indium Gallium Zinc Oxide semiconducting channel; 

D Aluminium oxide gate dielectric layer; 

E Ti/Au gate electrode; 

F Ti/Au common source electrode. 

 

On a glass or polymer substrate, neutralised by SiNx or SiOx, an indium gallium zinc oxide precursor solution is 

coated as a sol-gel form and photo-annealed in a N2 atmosphere for a controlled time. Alternatively, a vacuum 

deposition technique (e.g. sputtering ) can be used to deposit the metal-oxide layer. However the high 

temperature of these processes might affect the quality and density of the IGZO deposited layer, thus might not 

be suitable for low temperature flexible electronic substrates. 

 

d) 

 𝜎VRH(T)=𝜎0exp-(𝑇0/𝑇)1/𝑑+1, where d=3 

𝜎VRH(T)=𝜎0exp-(𝑇0/𝑇), when d=1 

Due to the most difficult hopping path limiting the conductivity in the 1D case, unlike the optimal hopping path 

between the parallel chains in the 3D case. 

 

Assessor’s comments: 

Question (a) and (c) were also answered well. In particular, almost everyone could identify the materials and 

components in the TFT schematic. However, most of the students poorly answered (b) and (d), in particular, the 

assumptions for electronic band model in (b).   



4) 

 
a) 

 

Figure 2: (a) sketch of the bent polymer film. (b) linear strain variation across the thickness of the polymer film. 

 

The neutral plane for a uniaxially bent homogeneous polymer film denotes a plane parallel to its surfaces where 

the strain is zero. In the bent polymer film sketched in the above fig.1 (a), there will be compressive strain on 

top surface and tensile strain on the bottom surface. The strain variation across the thickness in a homogeneous 

polymer film will be linear, as shown in Fig 1(b). The neutral plane, marked by a dotted line in the centre along 

the thickness will therefore experience minimal strain. 

 

b) 

Optimum thickness (considering 90% transparency) is topt = 1/10 α = 1/(10*100000) cm = 10 nm 

 

FOM, Φ = σ topt exp(-10 α topt) = 0.37 x 10 x 10 -9/ (1.7 x 10 -8) = 3.7/1.7 = 0.217 

 

c) 

 

Sheet resistance at 90% T (10 nm thickness, topt) = 2 x 0.85 = 1.7 Ω/sq (required value 2 Ω/sq). 

 

Satisfies the requirements. 

 

Plasma carrier frequency fp= c / λ = 3 x 108 / λ  = (5.66 x 1020)1/2 x 1.602 x 10-19/ 2pi x (9.109 x 10 – 31 x 8.854 x 

10-12)1/2 = 2.136 x 1014 

 

λ ~ 1400 nm (required value 1500 nm). 

Does not satisfy the requirements. 

 

Overall, the material does not satisfy the application requirements. 

 

d) 

Percolation of sticks with monodisperse diameter can be written as: 

 

𝑁𝐶𝐿2 = 5.71 

where 𝑁𝐶  is the critical percolation threshold (minimum number of nanowires required to form a percolated 

network) and L is the length of the nanowires. 

 

Thus, for sample A (L=100 nm = 1x10-5 cm), 

(a) (b) 



 

𝑁𝐶𝐴𝐿2 = 5.71 

𝑁𝐶𝐴 =
5.71

(1.2 × 10−5)2
  /cm2 

 

𝑁𝐶𝐴 = 3.96 × 1010 /cm2 

 

i.e. 3.96 × 1010 number of wires will be required per cm2 to establish a percolated network. 

 

Similarly, 

 

 𝑁𝐶𝐵 =
5.71

(0.5 × 10−5)2
 = 22.84 × 1010 /cm2 

 

𝑁𝐶𝐶 =
5.71

(0.7 × 10−5)2
= 11.65 × 1010 /cm2 

 

𝑁𝐶𝐷 =
5.71

(0.8 × 10−5)2
 = 8.91 × 1010 /cm2 

 

Assessor’s comments: 

This was a popular question. Most could answer the standard bookwork questions (a) and (b). A few students 

had difficulties in unit conversion. However, the majority struggled with the equation for plasma frequency as 

well as the numerical calculation in (c). Almost everyone could answer the straightforward numerical question 

in (d).  

 

 

 
 


