Problem (1)

$$
\begin{aligned}
& V=225 \mathrm{kN} \\
& M=150 \mathrm{kN}
\end{aligned}
$$

(a)

$$
\begin{aligned}
& q_{\text {net }}=s_{c} d_{c} N_{c} s_{u}+\gamma h \\
& s_{c}=1+0.2 \frac{\mathrm{~B}}{\mathrm{~L}}=1.2 \\
& d_{c}=1+0.33 \tan ^{-1}(\mathrm{~h} / D)=? \quad \begin{array}{l}
\text { Since } d_{c}>1 \text { it is } \\
\text { conservative to use } d_{c}=1
\end{array} \\
& N_{c}=2+\pi=5.14 \\
& q_{\text {ult }}=(1.2)(1.0)(5.14)(30 \mathrm{kPa})+\left(18 \mathrm{kN} / \mathrm{ms}^{3}\right)(1 \mathrm{me})=200 \mathrm{kPa}
\end{aligned}
$$

(b) Use Mexperthof's method

$$
\stackrel{+\| \| \|}{\longleftrightarrow} \quad e=\frac{M}{V}=\frac{150 \mathrm{kN} \mathrm{~m}}{225 \mathrm{kN}}=0.67 \mathrm{~m}
$$

$$
B^{\prime}=B-2 e
$$

Using Eurocode factors
Factor Sur $\quad S_{\text {all }}=\frac{30 \mathrm{kPa}}{1.4}=21.4 \mathrm{kPa}$

$$
\begin{aligned}
& q_{\text {all }}=(1.2)(5.14)(21.4)+18=150 \mathrm{kPa} \\
& B^{\prime}=\sqrt{\frac{225 \mathrm{kN}^{\prime}}{150 \mathrm{kPa}}}=1.22 \mathrm{~m}
\end{aligned}
$$

Factor load

$$
B^{\prime}=\sqrt{\frac{(225 \mathrm{kN})(1.35)}{200 \mathrm{kPa}}}=1.23 \mathrm{~m}
$$

Therefore use $B^{\prime}=1.23 \mathrm{~m} \quad \Rightarrow B=1.23+(0.67)(2)=2.57 \mathrm{~m}$ Use $B=2.6 \mathrm{~m}$

One could a que for a footing of size $2.6 \mathrm{~m} \times 1.3 \mathrm{~m}$ Check if pal is reduced

$$
\begin{aligned}
& r_{c}=1+0.2\left(\frac{1.3}{2.6}\right)=1.1 \\
& q_{a l l}=(1.1)(5.14)(21.4)+18=139 \mathrm{kPa} \\
& B^{\prime}=\sqrt{\frac{225 \mathrm{kN}}{139 \mathrm{kPa}}}=1.27 \mathrm{~m} \quad B=2.61 \mathrm{~m}
\end{aligned}
$$

Select size: $2.6 \times 1.3 \mathrm{~m}$
(c) Derive interaction diagram

$$
\begin{aligned}
& \frac{V}{L(B-2 e)}=(2+\pi) s u \\
& \frac{V}{L(2+\pi) S u}=B-\frac{2 M}{V} \\
& M=\frac{B V}{2}-\frac{V^{2}}{2 L(2+\pi) S u} \\
& M=\frac{B V}{2}[1-\underbrace{\frac{V}{B L(2+\pi) S u}}_{V_{\text {Gut }}}]
\end{aligned}
$$

$$
M=\frac{B V}{2}\left[1-\frac{V}{V_{\text {vet }}}\right]
$$

For V alone, $M=150 \mathrm{kNM} ; V_{\text {wet }}=[(1.1)(5.14)(30 \mathrm{kPa})+18 \mathrm{kPa}](2.6)(1.3)$

$$
\begin{aligned}
& M=\frac{B V_{\text {max }}}{2}\left[1-\frac{V_{\text {max }}}{\left.V_{\text {Mat }}\right]} \quad=(188 \mathrm{kPa})(2.6)(1.3)=634 \mathrm{kN}\right. \\
& \left(\frac{B}{2} V_{\text {net }}\right)_{\text {max }}^{2}-\frac{B}{2} V_{\text {max }} M=0 \\
& V_{\text {max }}^{2}-V_{\text {met }} V_{\text {max }}+\frac{2 M V_{\text {vet }}}{B}=0 \\
& V_{\text {max }}^{2}-(634 \mathrm{kN}) V_{\text {max }}+\frac{(2)(150 \mathrm{kNm})(634 \mathrm{kN})}{(2.6 \mathrm{~ms})}=0 \\
& V_{\text {max }}=\frac{634 \pm 154}{2}=\frac{\sqrt{(634)^{2}-4(73,154)}}{2}=\frac{634 \pm 331}{2}=482 \mathrm{kN} \\
& F 5=\frac{482}{225}=2.14
\end{aligned}
$$

For M alone

$$
\begin{aligned}
& M=\frac{B(225 \mathrm{kN})}{2}\left[1-\frac{(225 \mathrm{kN})}{(634 \mathrm{kN})}\right]=189 \mathrm{kN} \mathrm{~m} \\
& F S=189 / 150=1.26 \quad \text { LoW! }
\end{aligned}
$$

Most students could solve easily the first part of the problem, calculating capacity and selecting an appropriate dimension for the foundation. Students could apply code partial factors correctly. Most difficulties were encountered in deriving the V-M failure surface, although a good number of students made good progress.
a)

$$
\begin{array}{lll}
L=20 \mathrm{~m} & \frac{L}{D}=20 & n=\gamma^{\prime} K_{p}^{2}=90 \mathrm{kN} / \mathrm{m}^{3} \\
\Gamma=1 \mathrm{~m} & \\
e=0
\end{array}
$$

Short pile:
Long pile:

$$
\frac{H}{n 0^{3}} \sim 50
$$

$$
\text { If } \frac{H}{n D^{3}}=50 \quad \frac{M_{p}}{n D^{4}} \cong 330
$$

$$
\begin{aligned}
& H_{\text {ult }}=50 \times 90=4500 \mathrm{kN} \\
& M_{p}>330 \times 90=29,700 \mathrm{kN} \mathrm{~m}
\end{aligned}
$$

$$
M_{p}=\sigma_{y}\left[\frac{d_{0}^{3}-d_{i}^{3}}{6}\right]
$$

$$
\begin{aligned}
& \sigma_{y}=250 \mathrm{MPa} \\
& d_{0}=1 \mathrm{~m} \\
& d_{i}^{3}=0.2872 \\
& d_{i}=0.66 \mathrm{~m} \\
& t=170 \mathrm{~mm}
\end{aligned}
$$

P)

$$
\begin{aligned}
& \gamma_{d r_{y}}=16 \mathrm{kN} \mathrm{~m}^{-3} \quad K_{p}=3 \\
& \gamma^{\prime}=10 \mathrm{kNm}^{-3} \\
& \text { Resistance }=D K_{p}^{2} \sigma_{r}^{\prime}
\end{aligned}
$$

per unit length

$$
\begin{aligned}
& \text { ToP) } \frac{5 \times 720}{2} \times \frac{2 \times 5}{3}+\begin{array}{l}
(x-5) \times 720 \\
\times \frac{x+5}{2}
\end{array} \\
& +\frac{90(x-5)^{2}}{2}\left(5+\frac{2}{3}(x-5)\right) \\
& = \\
& 90(x+3)(20-x) \frac{(20+x)}{2} \\
& +(20-x)^{2} \times \frac{90}{2} \times\left(20-\frac{20-x}{3}\right)
\end{aligned}
$$

$$
\begin{gathered}
6000+360\left(x^{2}-25\right)+225\left(x^{2}-10 x+25\right)+30\left(x^{3}-15 x^{2}+75 x-125\right) \\
= \\
45 \underbrace{(x+3)\left(400-x^{2}\right)}_{\left(1200+400 x-3 x^{2}-x^{3}\right)}+900\left(400-40 x+x^{2}\right)-15\left(8000-1200 x+60 x^{2}-x^{3}\right)
\end{gathered}
$$

$$
(20-x)^{3}=\left(400-40 x+x^{2}\right)(20-x)=8000-1800 x+60 x^{2}-x^{3}
$$

$-29,125+270 x^{2}+60 x^{3}=0$
$x=15.6^{3} \mathrm{gm}$
$P=\frac{720 \times 5}{2}+720 \times 10.6{ }^{3} 8+45 \times 10.6^{3} \mathrm{~m}^{2}$

$$
-90 \times 18.6{ }^{3}-45 \times 4.37^{7^{2}}
$$

$$
\times 4.37
$$

$=$

$6,355 \mathrm{kN}$

Q2 Steel pile design 19 attempts, Average mark 13.7/20 (\%), Maximum 18, Minimum 10. Almost all students could design the pile using the standard method in part a, though many used thin-walled Mp calculations despite the thick-walled answer that results in part ii without comment. In part b most students realised that a first-principles calculation was required but with varying success. The main error was in translating rather than rotating the pile and thus not having the opposing loads near the pile base.

$$
q_{\text {build }}=200 \mathrm{kPa}
$$

(a)

$$
q_{\text {net }}=200 \mathrm{kPa}-\gamma_{\text {clay }} D=200-\left(\frac{20 \mathrm{kN}}{\mathrm{~m}^{3}}\right)(4 \mathrm{~m})=120 \mathrm{kPa}
$$

(b) Assume foundation is fully flexible-

From data boot $\quad \omega_{c}=\frac{(1-\nu)}{G} \frac{q B}{2}$ Erect

$$
\begin{aligned}
\frac{L_{B}}{B}=\frac{35}{25}=1.4 & \Rightarrow I_{\text {rect }}=0.658 \\
\omega_{c} & =\frac{(1-0.5)}{10 \mathrm{MPa}} \frac{(120 \mathrm{kPa})(25 \mathrm{~m})}{2}(0.658)=0.05 \mathrm{~m}
\end{aligned}
$$

The settlement at the centre can be calculated from sefferposition of 4 smaller forendatuons of size $\frac{25}{2} m \times \frac{35}{2} m \quad \Rightarrow L / B=1.4$ $I_{\text {rect }}=0.658$

$$
\text { Wcentre }=4 \omega_{c}=\frac{(1-0.5)}{10 \mathrm{MPa}} \frac{(120 \mathrm{kPa})(25 \mathrm{~m} / 2)}{2}(0.658)=0.1 \mathrm{~m}
$$

Deflection ratio $\frac{\Delta}{L}=\frac{0.1-0.05}{\frac{1}{2} \sqrt{25^{2}+35^{2}}}=2.3 \times 10^{-3}$
This deflectioci ratio may cause slight damage ito stiff masonry infills -
(c) Settlement for rigid rectangle from data book

$$
w_{r}=\frac{(1-\nu)}{G} \frac{g_{\text {avg }} \sqrt{B L}}{2} I_{\text {rad }}
$$

Ind ≈ 0.89

$$
w_{r}=\frac{(1-0.5)}{10 \mathrm{MPa}} \frac{(120 \mathrm{kPa}) \sqrt{(25 \mathrm{ml})(35 \mathrm{~m})}}{2}(0.89)=0.08 \mathrm{~m}
$$

An actual foundation is generally between the two limiting conditions of gull flexibility and full rigidity. In this case, a rather large mat foundation at depth, the situation is muon likely to be loser to the rigid sunult.
(d)

From data book:

$$
\begin{aligned}
& \text { Wavg }=\mu_{0} \mu_{1} \frac{q B}{E} \\
& \begin{aligned}
E & =2 G(1+\nu)=(2)(10 \mathrm{MPa})(1+0.5)= \\
& =30 \mathrm{MPa}
\end{aligned}
\end{aligned}
$$

$$
D / B=\frac{4 m}{25 m}=0.16 \Rightarrow \mu_{0}=1.0
$$

$$
\begin{aligned}
& \frac{H}{B}=\frac{21 m}{25 m}=0.84 \Rightarrow \mu_{1}=0.3 \\
& l_{/ B}=\frac{35 m}{25 m}=1.4 \\
& W_{\text {avg }}=(1.0)(0.3) \frac{(120 \mathrm{kP})(25 \mathrm{~m})}{30 M P_{a}}=0.03 \mathrm{~m}
\end{aligned}
$$

(e) The stiffness estimated from a triaxial test is likely to be smaller than the actual stiffens in the field. In addition, stiffer is frofortionial to confuing steen and the building perse will virrease steen under the foundation

Q3 Settlement of a raft 15 attempts, Average mark 12.5/20 (62.7\%), Maximum 16, Minimum 7. Most students could calculate the various estimates of settlements for a raft foundation, with a few using the incorrect dimensions when applying superposition of elastic solutions. There was some confusion on net pressure and very few could show clear understanding of issues in measuring stiffness.

24
a) i) Pile base is much less stilt than shaft, especially for bored piles in which base is not pre-loadel and may contain disturbed material.
ii) $L=15 \mathrm{~m} \quad D=0.3 \mathrm{~m}$

$$
\begin{aligned}
\frac{V}{\omega_{\text {head }}}=\frac{2 \pi L G_{\text {aves }}}{\zeta} & =\frac{2 \pi \times 15 \times 20 \times 10^{6}}{4} \\
& =471 \mathrm{MN} / \mathrm{m}
\end{aligned}
$$

$$
\begin{aligned}
A: \quad \omega=\left(\frac{1+0.675+0.25}{1.925} \omega_{A}\right. & +(\overbrace{0.848+0.446}^{1.294} \omega_{B} \\
& +0.424 \omega_{C}
\end{aligned}
$$

$B: \quad \omega=\frac{(0.828+0.446)}{1.294} \omega_{A}+\frac{(1+0.5+0.1645)}{1.6645} \omega_{B}+6.3375 \omega_{\mathrm{C}}$
$C:$

$$
\begin{array}{r}
\left.\omega=\begin{array}{l}
1.696 \\
\omega_{A} \\
\omega_{B} \\
\omega_{C}
\end{array}\right]=\begin{array}{l}
0.233 \omega \\
0.409 \omega \\
0.053 \omega
\end{array}
\end{array}
$$

Elastic behcouose loads in proportion to settlemads

$$
\begin{aligned}
& P_{A}+4 \times 0.233+4 \times 0.409+0.053=2.5733 \\
& P_{A}=\frac{0.233}{2.573} P=0.09 P \\
& P_{B}=0.159 P \\
& P_{C}=0.021 P
\end{aligned}
$$

Pile A takes 0.09 of total load and settles by $\frac{\omega_{A}}{0.233}$

$$
\text { Settlement increases by } \frac{0.09}{0.233}=0.386
$$

compared to single pile carrying entwine load
So compared to indiridus pile carrying $1 / 9$ of lond $\begin{aligned} & \text { settlement increases by } 3.47 \times \\ & \text { efficiency }=\underline{28.7 \%} \\ & \text { stiftinss }=\frac{471}{0.386}\end{aligned}$

Q4 Concrete pile group design 14 attempts, Average mark 13.1/20 (\%), Maximum 20, Minimum 5.
Most students correctly answered part a and made pleasingly competent attempts at part b which was a difficult question. The major error in part b was in assuming that the piles all had the same settlement if unaffected by their neighbours, which is incorrect owing to the non-uniform distribution of pile loads. I was pleased to see a couple of answers receiving full marks for this question as it is a very complex problem.

