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1 (a) The internal energy of the separate blocks must be equal to the combined
internal energy of the blocks when together. Therefore, if cm is the specific heat capacity of

the metal,

Cm(mA+mB) B (mA+mB)

TF=

(b) The maximum work will be delivered if a reversible heat engine is employed and the
final temperatures of the blocks are equal.
For a reversible heat engine the work éW produced from 8Q units of heat delivered from the

hotter block is given by,

aw Ty -Te
dQ o

Also, dQ=-m,c,,dT,, dQ—dW =mygc,dT., andso dW =-m,c,dT, —mgc,dT-.

Hence,
m,dT, m,dT,, T, T, A, P T
Integrating,

m,In(T, )+ mgin(7;) = const = m,In(T,)+ m,In(T;)  (from the initial condition)

The final temperature is when 7. = T, =T.. Hence,

In(TF) = _mA_In(TA) + Lln(TB)' or T, = (TA)r (TB)1_r [7]

m, +mpg) (my +mpg)



(b)

(a) For a reversible process,dq,,, =Tds and dw,, = pdv, so dq =du+dw may be
written Tds =du+ pdv. From the definition h=u+ pv we have dh=du+ pdv +vdp
and then, by substitution for du+pdv, we obtain Tds=dh—vdp . This, and the
Tds =du + pdv expression, also holds for irreversible processes as there is always, via
heat and work transfers, a reversible route between states, and irreversible processes
between states cannot result in a different relationship between properties, since the

properties define the state.

(i)  Constant enthalpy. For a perfect gas h = ¢,T + constant. Hence, a constant h line

is also a constant T line which is a horizontal line on a T-s diagram.

(i) Constant pressure. From the relationship above, Tds =dh —vdp =dh+0.

T
For a perfect gas dh=c,dT, so Z_:L Hence, the trend is one of positive slope
s ¢
p

with the gradient increasing with temperature.

(iii) Constant volume. From the relationship above, Tds =du + pdv =du +0.

T T .
For a perfect gas du=c,dT, so d—:—. Since c, >c, always, the trend for this

ds ¢,

process is similar to that for a constant pressure process, but with an increased
gradient.

(iv) Reversible and adiabatic. This is equivalent to isentropic, i.e., a vertical line on a

T-s diagram.

(iv) (iii) /(i)

(i)

3]

(7]



3 (a) From tables for argon, R = 208 J/kg K and ¢, = 310 J/kg K.
Argon is a perfect gas and so the initial volume is given by,

,, _ MAT, _ 0.01x208x300
= _

p o = 0.00624 m* [6]
1

D’ 17
nD” _mx01" _ 400785 m?

(b) The piston areais A=

The force exerted by the spring on the piston after compression over a distance L is F = kL.
If the gas pressure is p2 then a force balance on the frictionless piston gives p2A = p1A + F.

Hence, the final pressure, volume and temperature are given by,

KL _ o5, 200x05

=p + — = =1.127x10° N/m*
P = Py A 0.00785

V, =V, + AL = 0.00624 + 0.00785x0.5 = 0.0102 m>

7o PV 1.127x10° x0.0102

) = 552.7K
mR 0.01x208

The work done by the gas is equal to the work done in compressing the spring plus the work

done against the atmosphere at pressure p1:

2 2
W, = kTL+p1AL = % + 10°x0.00785x 0.5 = 25.0 + 392.5 = 417.5}

The increase in internal energy of the gas and the heat transerred to the gas are given by,
U,-U, = mc,(T,—T,) = 0.01x310x(552.7 —300) = 783.3 )
Q, = W, + (U,—U,) = 417.5 + 783.3 = 1200.8 J [12]

(c)  The motion of the piston of mass M will be governed by Newton’s 2" law. If the small
distance moved from the initial position is Ax then the pressure in the cylinder will change
to a pressure pi1+Ap and the net force on the piston will be (p1+Ap)A — p1A — kAx = AAp -
kAx. The motion is therefore described by the ODE,

d*(Ax) _

M = —kAx + AA
dt? P

The changes in the gas are isentropic and so pV’ = constant. Taking logs and differentiating
gives, for small changes, Ap/p,= —yAV/V, = —y AAx/V, . Hence,

2 . 2
Mdafﬁ") = —[k +ﬁ’i]m

1

By inspection, the effective spring constant is (k + y p,A*/V,). [12]



4 @ w-=filv, U T, c, R)
Sl units : i LR I
kg s s kgK kgK

The dimensions of the variables are :
w = fo(vlr UI Tll Cpr R)
2 L L 2 L2
T? T T 0 T%0

There are 6 variables and 3 dimensions (L, T, 0) so, according to Buckingham’s rule, there

are 6 — 3 = 3 or more non-dimensional groups required to specify the problem. (4]

(b) In performing the eliminations there are several possible options. The following

produces the ‘standard’ set of groups but any combination is analytically correct.

First, note that V1 and U, and ¢, and R, have the same dimensions. Hence,

V, G
w = f1[_1.- U, T1; Cp: _pJ

Eliminate L using U (T goes at the same time) :

ﬂ:fﬁCPTlc_P
U? u' v R

Four non-dimensional groups completely define the problem. The conventional set is :

ﬂ:fﬁLc_P
U u” fe." R

(6]



5 (a) The anti-clockwise torque about the pivot, exerted by the water on the dam, is

given by (w = width = 0.5 m),

3 3 2
X X 14
Ty = IPQWX(X—l)dX . PQW[?—E—} = '3—,09W
1 1

The clockwise torque about the pivot due to the mass M is given by T¢ = 5Mg.
For the dam to open when the water level is 2 m,

14 14 14 x1000x0.5
5Mg="—pgw > M= —pw=——"0—70H—6¥4¥— =467k
g 3 P4a 15,0 15 g

(b) The hole and valve should be placed at the lowest part of the dam so that the pressure
difference driving the flow through the hole is a maximum.

The minimum flow area will correspond to a frictionless flow through the hole and valve for
which Bernoulli’s equation will apply. Applying Bernoulli’s equation from far upstream on
the bed where the pressure is (pa: + 20g), the velocity is zero and the height (above the bed)
is zero, to the exit plane of the hole where the pressure is pa: , the velocity is V and the
height is zero, gives,

V2
(pat+2pg)+0+0:pat+pT+0 - V=,4q

The flowrate is given by AV = 0.001 m3s! where A is the flow area at the valve. Hence,

_0.001

Jag

A = 1.6x107*m?

(5]

(5]



6. (a) With the deflector stationary and assuming the flow steady, incompressible and

inviscid, Bernoulli’s equation becomes,
1 1
Pt oAV =ppt ol

Because p1=p2 =pa it follows that V, = V1.

(b)  Using steady-flow mass continuity, pAiVi = pA:xV2. Hence, A=A;.

(c) Consider a control volume as sketched and use the Steady Flow Momentum Equation.

i}

momentum flowrate (in — out)
pPQVi—(-¥)]
2pQV,

Force F

where Q = A1V, is the volumetric flowrate.

[Uj'

(d) If the deflector is moving to the right with velocity U then we move into a frame of
reference moving with the deflector so that the flow is steady in the control volume
sketched above. In this frame of reference, the velocity at entry to this control volume is
(Va-U). The area A; is unchanged so the volumetric flowrate into the control volume is
A1(V1-U). Using the same analysis as for part (c), the force exerted by the water on the
deflectoris F=2pA,(V, —U)*.

(e) The power extracted from the jet is the product of the force and the deflector speed,
P=FU=2pA(V,—UyU

At maximum or minimum power,

gg=2pﬂkﬂw—wUHW—Wﬁ=0

— 2pAV,—U)V,-3U) = 0

By inspection, maximum power is obtained when U = V1/3. (The minimum is obtained when
U = V1). The assumptions are that the flow is incompressible and inviscid and that there is no
loss of mechanical energy in the control volume containing the deflector. We have also
assumed that the jet remains perfectly aligned with the deflector such that the momentum
change is only in the horizontal direction.

[4]
(5]

[7]

[7]

[7]



Note: This analysis is not the same as that of the Pelton wheel found in many textbooks. In
this question the jet of water impinges on a single deflector. The deflector moves to the
right at speed U and the jet of water between the nozzle and deflector lengthens. This jet
contains kinetic energy. In contrast, the Pelton Wheel is a large wheel containing many
deflectors. These deflectors arrive repeatedly at the nozzle, so the jet between the nozzle
and the deflector is continually broken and its kinetic energy is extracted. in the analysis, the
only difference is in the volumetric flowrate used in part (d). For this question, the
volumetric flowrate is that into the moving control volume, A1(V1-U). For the Pelton wheel

analysis, the volumetric flowrate is that from the nozzle, A1V1.
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Q7 Mixer arm

a) We can take pairs of semicircles on opposing sides together. The moment of inertia of a
thin disc around its rotational axis is M R?/2, so using the perpendicular axis theorem, the
moment of inertia around one of its diameters (e.g. the mixer axis) is half of that, M R?/4.
The four paddles are equivalent to two discs (each of mass 2M), so altogether the moment
of inertia is I = M R2.

b) The final angular velocity is w = 10 x 27 =~ 63 s~1, so the final kinetic energy is Iw?/2 =
0.1x0.1%x § x 632 ~ 2 Ws, this is the amount of work done over one second, so the average
power is 2 W.

Q8 Track

a) Use conservation of energy. Assume the mass is m = 1, the initial kinetic energy of the
ball is KE = %vz. When the ball is at an angle 6, the potential energy has increased by
PE = (1 + cos9) Rg, and therefore the kinetic energy for the ball moving at speed u(f) is
KE = 1u? = 2v% — (1 + cos#) Rg. So u(f) = \/v? — 2(1 + cos ) Rg.

b) The condition for not losing contact is that the force between the ball and the track should
not drop below zero, when the ball would go into free fall. The place where this would
happen first is when the centripetal acceleration and the gravitational acceleration point
in the same direction, i.e. for § = 0. The centripetal acceleration is u?/R, so the condition
is (v2 — 2(1 + 1)Rg)/R = g, which gives v = \/bRg.

Q9 Comet
3

a) Only the mass below the particle gives rise to a nonzero force, and as its mass is p%m‘ ,
its gravitational pull is F((r) = panr3Gm/r? = §pnGmr.

b) The work done against gravity is
& Ry 4 1,p 2 s o
/ F(r)dr :/ §p7errdr = gprm[ETQ]T = gpﬂ'Gm(R —r9).

c¢) The mass at radius 7 is pra2dr/4, so the work in lifting all the mass up (from both sides
of the comet) is

R
/ ngzﬂ'2a2i(R2 —r)dr = %G(p’/ra)z[R2r —73/3)8 = 2(pma)®GR? /9.
0

d) The force on a test particle is linear with 7, so the particle behaves like a simple harmonic
oscillator with force constant k = % pmGm, so the frequency is y/k/m = ,/% oG



Cribs — Part IA Mechanical Engineering
Q1lo.
(a) v =-200¢e,

10, 10,
NN

a=

object

v=200m s«

h 4

€9

a=10ms>

r

The radial component of the acceleration can be calculated as below-

ré =200

5. 0=-02rads™
F—r6*=7.07ms™"
L F=47.07ms™

(b) If Ris the instantaneous radius of curvature:

a, =—

R
V2 % (200)>
10

.. R=5.66Kkm

L R=

Qill.

1 0
(a) By inspection the mode shapes are {0} and L} . The corresponding natural frequencies are
2k k
, =1/—— and @, =41/— .
m m

(b) If the initial conditions are given by: x=0, y=0, x=0, y =1 at time t =0 then the general
equation for the particle can be written as:
x=Acosw,t+Bsinw,t

y=Ccosot+Dsinat



1 1
Plugging in the initial conditions weget: A=B=C=0and D=—= Z\/% and therefore the

w
0
. . . 1 .
subsequent motion is given by | 1 fﬂ sin4 ’Et
4\ k m

Q12.
(@) mk=—k(x—y)—k(x—y)—A(x—y)—-24x~7y)

mii + 2k (x — y) +34(k— ) = 0
m(X—y)+2k(x—y)+34(x - y) = —-my
SomZ 4342+ 2kz = —my

La=3,p=2

(b) mZ + 34z +2kz=—my (1)
Putting y = Ye'”, z = Ze"™ we get:

—ma*Z +3iaZ +2kZ = —-mw’Y

—ma?Y
Z= - :
—mo” +3Aiw+2k
Z = Y
( 2k 3,11']
1-— ==
mao mao
1Z] = -

For Y=10 mm and @=5rad s™

|Z]= 2 =1.31 mm.

[6-22y(9))

¢=tan’l[3><5x5]z0.4 rad.

200-25



(c) From the CUED Mechanics databook Pg. 11 we can infer that £ ~ 0.39 to maximise the working

range for the transducer.

34

= =0.39
d 2 2km
SA=3.67 Nsm?

From CUED Mechanics databook Pg. 10
wn
J1-2¢2

S.o, =16.90 rad/s

By =

(d) Dividing equation (1) by m, we can see that this maps to case 4.5 in the CUED Mechanics
databook, Pg. 7.

0.61x14.14
200

From the graph on Pg. 7, the maximum overshoot is estimated to =~ 43 mm

2
Also the logarithmic decrement is given by 6 = \/—”_§7 =2.66.
1-¢

<~ N& = In ™ — In(1000)
Zﬁ,,
~N=26

which at 13 rad/s takes 1.25 seconds to settle to within 0.1% of the maximum value.



