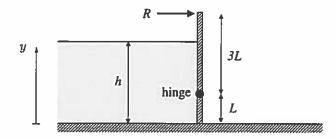
Pt IA paper 1 2016

 $\mathbf{Q}\mathbf{1}$



(a) The force on the gate is the integral of the hydrostatic pressure on its surface. On the air side $p = p_a$, and on the water side $p = p_a + \rho g(h - y)$, so the resultant is

$$F = \int_0^h \rho g(h-y) dA = \int_0^h \rho g(h-y) w dy = \rho gw \int_0^h (h-y) dy = \frac{1}{2} \rho gw h^2.$$

(b) The moment of R on the hinge is M=3RL, and needs to balance the moment by the hydrostatic pressure, so

$$M = \int_0^h (L-y)\rho g(h-y)\mathrm{d}A = \rho gw \int_0^h (L-y)(h-y)\mathrm{d}y = \left(L - \frac{1}{3}h\right) \frac{1}{2}\rho gwh^2.$$

The above expression can also be obtained from the value of F and its point of action, y = h/3. The reaction must then be

$$R = \frac{1}{18} \rho g w h^2 \left(\frac{3L - h}{L} \right),$$

which is zero for h = 0 and h = 3L, positive for 0 < h < 3L and negative for h > 3L.

 $\mathbf{Q2}$

(a) Viscous effects are negligible between 1 and 2, so Bernoulli's equation can be applied. We then have

$$p_1 + \frac{1}{2}\rho V_1^2 = p_2 + \frac{1}{2}\rho V_2^2,$$

or

$$p_1 - p_2 = \frac{1}{2}\rho \left(V_2^2 - V_1^2\right) = \frac{1}{2}\rho V_1^2 \left[\left(\frac{V_2}{V_1}\right)^2 - 1 \right].$$

From continuity, $V_1A_1 = V_2A_2$, so substituting for V_2/V_1 we have

$$p_1 - p_2 = \frac{1}{2}\rho V_1^2 K_1,$$

with

$$K_1 = \left(\frac{A_1}{A_2}\right)^2 - 1.$$

(b) There is vigorous mixing and dissipation between 1 and 2, so Bernoulli's equation cannot be applied. Instead, the steady flow momentum equation can be applied to the flow in the pipe between sections 2 and 3. Neglecting friction forces at the walls we have

$$p_2A_3 + \rho V_2A_2V_2 = p_3A_3 + \rho V_3A_3V_3.$$

Note that p_2 acts on the whole section 2, including the back face of the expansion. From continuity, $V_2A_2 = V_3A_3$, but also $A_3 = A_1$ (and therefore $V_3 = V_1$), so substituting we have

$$p_2A_3 + \rho V_1A_1V_2 = p_3A_1 + \rho V_1A_1V_1$$

which gives

$$p_2 - p_3 = \rho V_1^2 \left(1 - \frac{V_2}{V_1} \right) = \rho V_1^2 \left(1 - \frac{A_2}{A_1} \right) = \frac{1}{2} \rho V_1^2 K_2,$$

with

$$K_2 = 2\left(\frac{A_1}{A_2} - 1\right).$$

(a) From the streamline curvature,

$$\frac{\mathrm{d}\rho}{\mathrm{d}r} = \frac{\rho V^2}{r} = \rho \omega^2 r,$$

where r is the distance to the axis of symmetry. Integrating between A and B we have

$$\int_{A}^{B} \mathrm{d}p = \int_{r_{A}}^{r_{B}} \rho \omega^{2} r \mathrm{d}r,$$

$$p_{B} - p_{A} = \rho \omega^{2} \int_{r_{A}}^{r_{B}} r \mathrm{d}r = \frac{1}{2} \rho \omega^{2} r_{B}^{2}.$$

(b) Let point A be at the free surface. Point B will then be under a column of water of height $\Delta h(r_B)$. The pressure at A is the ambient pressure,

$$p_A = p_a$$

while the pressure at B will be

$$p_B = p_a + \rho g \Delta h(r_B).$$

The difference between them is $p_B - p_A = \rho g \Delta h(r_B)$, but must also satisfy the expression from (a), so we have

$$ho g \Delta h(r_B) = rac{1}{2}
ho \omega^2 r_B^2.$$

The shape of the free surface is then

$$\Delta h(r) = \frac{\omega^2 r^2}{2g}.$$

(c) The volume of water at rest is

$$V = \pi R^2 h_0,$$

and it must be the same when rotating. In the latter case, the volume can be calculated for instance as the sum of the volume of a cylinder of radius R and height $h_1 - \Delta h(R)$ and the volume under the paraboloid defined by $\Delta h(r)$ between r = 0 and r = R,

$$V = \pi R^2 \left(h_1 - \Delta h(R) \right) + \int_0^R \Delta h(r) 2\pi r dr,$$

Introducing the expression for $\Delta h(r)$ from (b), we have

$$V = \pi R^2 \left(h_1 - \frac{\omega^2 R^2}{2g} \right) + \int_0^R \frac{\omega^2 r^2}{2g} 2\pi r dr = \pi R^2 \left(h_1 - \frac{\omega^2 R^2}{4g} \right).$$

The relationship between h_1 and h_0 is therefore

$$h_1 = h_0 + \frac{1}{4} \frac{\omega^2 R^2}{a}$$
.

The maximum ω is achieved for $h_1 = H$,

$$\omega_{max}^2 = \frac{4g}{R^2} \left(H - h_0 \right).$$

(d) The shape of $\Delta h(r)$ remains unchanged, as follows from replacing part of the volume of water by an immersed solid –i.e. the cone. The solution $\Delta h(r)$ is only meaningful when the angle between the cone and the free surface at the contact point is positive, so

$$\left. \frac{\mathrm{d} \left(\Delta h(r) \right)}{\mathrm{d} r} \right|_{r = h_1} \le \tan \left(45^{\circ} \right) = 1.$$

Substituting for $\Delta h(r)$ from (b) we obtain

$$\frac{\omega^2 h_1}{a} \le 1.$$

If ω increases beyond that point, the free surface is not stable and some liquid escapes running up the cone walls, until the remaining volume of liquid can satisfy the above condition.

Q4

(a) Applying isotropic relationships from the databook for $T_2 = T_1 \left(\frac{p_2}{p_1}\right)^{\frac{\gamma-1}{\gamma}}$, where $T_1 = 300 \text{ K}, p_1 = 1 \text{ bar}, p_2 = 4.5 \text{ bar and } \gamma = 1.4$ $T_2 = 300 \text{ K} \left(\frac{4.5}{1}\right)^{0.4/1.4} = 461 \text{ K}$

Intended solution - steady flow energy equation

Applying the first law of thermodynamics assuming steady state steady flow
$$\frac{\mathrm{d} \vec{E}_{1} \vec{V}}{\mathrm{d} t} - \Sigma \left(\dot{m}_{1} \left(h_{1} + \frac{\vec{V}_{1}^{Z}}{2} + g_{Z} \right) \right) + \Sigma \left(\dot{m}_{2} \left(h_{2} + \frac{\vec{V}_{2}^{Z}}{2} + g_{Z} \right) \right) = \dot{\vec{W}} - \dot{W} \text{ and } \dot{m}_{1} = \dot{m}_{2}$$

$$\dot{w} = h_2 - h_1 = c_p(T_1 - T_2) = 1.05 \text{ kJ/(kg K)} (300 \text{ K} - 461 \text{ K}) \rightarrow \boxed{\dot{w} = -161.9 \text{ kJ/kg}}$$

Alternative solution - constant volume

$$\dot{w} = u_2 - u_1 = c_v(T_1 - T_2) = 0.718 \text{ kJ/(kg K)} (300 \text{ K} - 461 \text{ K}) \rightarrow \boxed{\dot{w} = -115.6 \text{ kJ/kg}}$$

(b) Intended solution - steady flow energy equation

The work is given as, $w_{12} = -200 \text{ kJ/kg}$. Applying the first law of thermodynamics assuming steady state steady flow results in

$$T_{2b} = T_1 - \frac{w_{12}}{c_p} = 300 \text{ K} + 200 \text{ kJ/kg } / (1.005 \text{ kJ/(kg K)}) \rightarrow \boxed{T_{2b} = 499 \text{ K}}$$

$$\frac{\mathrm{dS}_{\mathrm{col}}}{\mathrm{dt}} - \Sigma \left[\dot{m}_{1} s_{1} \right] + \Sigma \left[\dot{m}_{2} s_{2} \right] = \int \frac{\mathrm{dG}}{T} + \dot{S}_{\mathrm{irrev}}$$

 $\dot{S}_{
m irrev} = s_2 - s_1$ From the databook for perfect gases the change in specific entropy is

$$\Delta s_{12} = c_p \ln \left(\frac{T_{2b}}{T_1} \right) - R \ln \left(\frac{p_2}{p_1} \right) = 1.05 \text{ kJ/(kg K)} \ln \left(\frac{499}{300} \right) - 0.287 \text{ kJ/(kg K)} \ln \left(\frac{4.5}{1} \right)$$

$$\Delta s_{12} = 80 \text{ J/kg K}$$

Alternative solution - constant volume

$$T_{2b} = T_1 - \frac{w_{12}}{c_v} = 300 \text{ K} + 200 \text{ kJ/kg} / (0.718 \text{ kJ/(kg K)}) \rightarrow \boxed{T_{2b} = 578.6 \text{ K}}$$

$$\Delta s_{12} = c_p \ln \left(\frac{T_{2b}}{T_1} \right) - R \ln \left(\frac{p_2}{p_1} \right) = 1.05 \text{ kJ/(kg K)} \ln \left(\frac{578.6}{300} \right) - 0.287 \text{ kJ/(kg K)} \ln \left(\frac{4.5}{1} \right)$$

$$\Delta s_{12} = 228 \text{ J/kg K}$$

Q_5

(a) Calculate the mass of air within the balloon. Apply the ideal gas law to determine the mass in the

$$m = \frac{p_{\text{atm}}V_1}{R_{\text{atr}}T_1} = \frac{100,000 \text{ Pa } 0.001 \text{ m}^3}{287 \text{ J/(kg K)}} \rightarrow \boxed{m = 0.0017 \text{ kg}}$$

(b) To determine the final temperature, the first law of thermodynamics is applied

First Law $Q - W = \Delta U$

$$\Delta U = mc_v \Delta T$$

$$W = p_{\rm atm} \Delta V + \sigma \Delta A$$

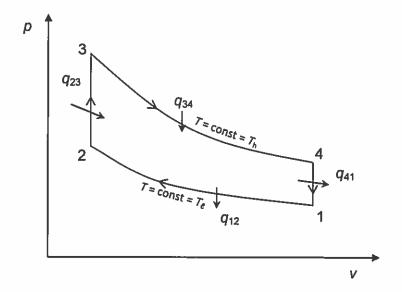
This formulation requires that
$$\Delta A$$
 be expressed in terms of ΔV $A=4\pi R^2$ and $V=\frac{4}{3}\pi R^3$, therefore $R=(\frac{3}{4\pi}V)^{1/3}$ so that $A=4\pi(\frac{3}{4\pi}V)^{2/3}$

$$T_2 = T_1 + \frac{1}{mc_v} (Q - p_{\text{atm}} (V_2 - V_1) - \sigma (4\pi (\frac{3}{4\pi} V_2)^{2/3} - 4\pi (\frac{3}{4\pi} V_1)^{2/3}))$$

$$T_2 = 300 \text{ K} + \frac{1}{0.0017 \text{ kg } 287 \text{ J/(kg K)}} (560 \text{ J} - 10^5 \text{ Pa} (0.005 \text{ m}^3 - 0.001 \text{ m}^3) \\ -100 \text{ N/m} (4\pi (3/(4\pi)0.005 \text{ m}^3)^{2/3} - 4\pi (3/(4\pi)0.001 \text{ m}^3)^{2/3}))$$

$$T_2 = 320.4 \text{ K}$$

Q6



- (a) $1 \to 2, q w = \Delta u$, where $\Delta u = 0 \to q = w$ with pdv < 0 therefore q < 0, Negative $2 \to 3, w = 0, q = \Delta u$, with dT > 0 therefore q > 0, Positive $3 \to 4, q w = \Delta u$, where $\Delta u = 0 \to q = w$ with pdv > 0 therefore q > 0, Positive $4 \to 1, w = 0, q = \Delta u$, with dT < 0 therefore q < 0, Negative
- (b) $r_v = v_4/v_3 = v_1/v_2$ $q_{in} = q_{23} + q_{34}$, where $q_{23} = \Delta u = c_v \Delta T = c_v (T_h T_l)$ and $q_{34} = w_{34} = \int_3^4 p dv$ Using the ideal gas relation, p = RT/v, thus $q_{34} = \int_3^4 (RT/v) dv = RT_h \ln{(v_4/v_3)}$ $q_{34} = RT_h \ln{(r_v)}$ $q_{in} = c_v (T_h T_l) + RT_h \ln{(r_v)} = (c_v + R \ln{(r_v)})T_h (c_v)T_l$ By inspection $k_1 = (c_v + R \ln{(r_v)})$ and $k_2 = c_v$.
- (c) (i) $\eta = \frac{w_{net}}{q_{in}} = 1 \frac{|q_{out}|}{q_{in}} = 1 \frac{q_{12} + q_{41}}{q_{23} + q_{34}}$ $q_{12} = RT_l \ln{(r_v^{-1})} = -RT_l \ln{(r_v)} = -287 \text{ J/(kg K) } 300 \text{ K ln } (6) = -154.3 \text{ kJ/kg}$ $q_{41} = c_v(T_l T_h) = 718 \text{ J/(kg K) } (300 \text{ K} 1400 \text{ K}) = -789.8 \text{ kJ/kg}$ $q_{23} = c_v(T_h T_l) = 718 \text{ J/(kg K) } (1400 \text{ K} 300 \text{ K}) = 789.8 \text{ kJ/kg}$ $q_{34} = RT_h \ln{(r_v)} = 287 \text{ J/(kg K) } 1400 \text{ K ln } (6) = 719.9 \text{ kJ/kg}$ $\eta = 1 \frac{154.3 + 789.8}{789.8 + 719.9} = 0.375 \rightarrow \boxed{\eta = 37.5\%}$
 - (ii) With the regenerator the heat from q_{41} is used as an input to q_{23} . Therefore,

$$\eta = 1 - \frac{|q_{12}|}{q_{34}} = 1 - \frac{154.3}{719.9} = 0.786 \rightarrow \boxed{\eta = 78.6\%} \text{ or}$$

$$\eta = 1 - \frac{RT_1 \ln{(r_v)}}{RT_b \ln{(r_v)}} = 1 - \frac{T_1}{T_b} = 1 - \frac{300}{1400} = 0.786$$

(d) To determine the heat transferred into the engine for $c_v = \alpha + \beta T + \gamma T^2$, where $\alpha = 610$ J/kg K, $\beta = 0.3$ J/kg K², $\gamma = 7 \times 10^{-5}$ J/kg K³, requires $q_{in} = q_{23} + q_{34}$. Here $q_{23} = \int_2^3 c_v dT = \int_2^3 (\alpha + \beta T + \gamma T^2) dT = \alpha (T_h - T_l) + \frac{\beta}{2} (T_h^2 - T_l^2) + \frac{\gamma}{3} (T_h^3 - T_l^3)$

$$q_{23} = 610(1400 - 300) + \frac{0.3}{2}(1400^2 - 300^2) + \frac{7 \times 10^{-5}}{3}(1400^3 - 300^3) = 1014.9 \text{ kJ/kg}$$

From part (c), $q_{34} = 719.9 \text{ kJ/kg}$

$$q_{in} = 1014.9 \text{ kJ/kg} + 719.9 \text{ kJ/kg} = \boxed{1734.8 \text{ kJ/kg}}$$

The efficiency is determined in the same manner as before

$$\eta = 1 - \frac{q_{12} + q_{41}}{q_{23} + q_{34}}$$

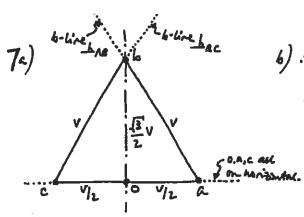
$$q_{12} = -154.3 \text{ kJ/kg}$$

$$\begin{array}{l} q_{12} = \text{-}154.3 \text{ kJ/kg} \\ q_{41} = -q_{23} = \text{-}1014.9 \text{ kJ/kg} \end{array}$$

$$q_{23} = 1014.9 \text{ kJ/kg}$$

$$q_{34} = 719.9 \text{ kJ/kg}$$

$$\eta = 1 - \frac{154.3 + 1014.98}{1014.9 + 719.9} = 0.326 \rightarrow \boxed{\eta = 32.6\%}$$



Achaves vertically like a structure, horizontally a mechanism b) :
$$V = mg$$
 by inspection of vertical equilibrium.

Then for H, use velocity diagram to match some in = some out. $\frac{\sqrt{3}}{2} \text{ mg } v = 2\left(\frac{H \cdot v}{2}\right) \Rightarrow H = \frac{\sqrt{3}}{2} \text{ mg}$

$$\frac{\sqrt{3}}{2} \text{ mgV} = 2\left(\frac{4.\text{ V}}{2}\right) \Rightarrow H = \frac{\sqrt{3}}{2} \text{ mg}$$

Ba) At max extension, both move at same speed
$$v_i$$
. Momentum conserved.
 $2mv = (2m+m)v_i$:: KE before $= \frac{1}{2}(2m)v^2 = mv^2$ Then consider treff both manages $v_i = \frac{2v}{3}$ \Rightarrow KE after $= \frac{1}{2}(3m)(\frac{2v}{3})^2 = \frac{2mv^2}{3}$:: PE in calable $= \frac{mv^2}{3}$

b) Cable is light wrt venicles, but not massless : EPE converted into KE of cable ends + some sound.

92)
$$V_{A} = \sqrt{2} \cdot \dot{i} - \sqrt{2} \cdot \dot{j}$$
 $V_{b} = 2 \cdot \dot{i}$ $V_{c} = 2 \cdot \dot{i}$

$$a_{A} = \left(\frac{2}{7} + \frac{1}{\sqrt{2}}\right) \cdot \dot{i} + \left(\frac{2}{7} - \frac{1}{\sqrt{2}}\right) \cdot \dot{j} \quad a_{b} = 0$$

There can all be written straightfurwilly except as that requires consideration of the contripctor as well as tangential tenus.

6)
$$V_{AC} = V_A - V_C = (\sqrt{2} - 2)\dot{L} - \sqrt{2}\dot{L}$$

 $V_{AC} = V_B - V_C = 2\dot{L} - 2\dot{L}$

Straight forward, provided terms are Authorated mithe convect shales and 18 huhioms to part (a) are correct.

c) $a_{ac} = a_{a} - a_{c} = \left(\frac{1}{\sqrt{2}} - \frac{3}{14}\right) \dot{c} + \left(\frac{2}{7} - \frac{1}{\sqrt{2}}\right) \dot{c}$

d) Let speed of have relative to B be d m/s and speed of have relative to A be e m/s $V_{BNL} - V_b = A \underline{\dot{U}} \qquad V_{BNL} - V_a = e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{J}} \right)$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{J}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot{U}} + \frac{1}{\sqrt{2}} \, \dot{\dot{U}} \right) + V_a$ $= e \left(\frac{1}{\sqrt{2}} \, \dot{\dot$ $\therefore \lambda \underline{i} + \underline{v_b} = e\left(\frac{1}{\sqrt{2}}\underline{i} + \frac{1}{\sqrt{2}}\underline{j}\right) + \underline{v_a}$ $d\vec{i} + 2\vec{j} = e\left(\frac{1}{\sqrt{2}}\vec{i} + \frac{1}{\sqrt{2}}\vec{j}\right) + \sqrt{2}\vec{i} - \sqrt{2}\vec{j} \implies e = \sqrt{2}\left(\sqrt{2} + 2\right) = 4.83 \text{ m/s}$ => 1= (12+2)+12 = 4.83 Ms

Ball must cover 7m @ 4.83 m/s => flight time = 1.45 s

.. B moves 2 × 1.45 = 2.90 m /i.e. R toggs pace with the back in the j direction; from B's perspective, the Ball goprownes purely it is direction,

Q10 $= \left(\frac{1}{2} \frac{U^{2} - Mq}{r_{0} + R} + \frac{MG}{R}\right) m$ $= \left(\frac{1}{2} \frac{(7900)^{2} - 6 \times 10^{2} \cdot 6 \cdot 67 \times 10^{3}}{(1200 + 6400) \times 10^{3}} + \frac{6 \times 10^{2} \cdot 6 \cdot 67 \times 10^{3}}{6400 \times 10^{3}}\right)$ => 41.08 × 106 Jkg With 10° J for lourch m = 1 x 10"
41.08 x 106 = 2434 kg (5) Use conservation of moment of momentum: = 8610 km

0

Q.11 1 19 free booky diagram (a) xy - ky = mig Standard ferm: < 1.2 From p. 9. of

data book 5 2 0.48

to keep / X/Y/ 5 1.2 @ W = 0.8 Wn (4)

 $\frac{M}{2} = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}, \quad \leq = \begin{bmatrix} 2\lambda & -\lambda \\ -\lambda & \lambda \end{bmatrix}$ $k = k_1 + k_2 - k_2$, $f = \begin{bmatrix} f \\ 0 \end{bmatrix}$ (b) $det(\underline{K} - \underline{M}) = 0$ $(2k-\lambda m_1)(2k-\lambda m_2)-k^2=0$ => >1,2 = k m, +m2 + /m,2 +m2 -m,m2 $\omega_1 = J \sum_i , \quad \omega_2 = J \sum_i$ (c) (K->:M) Y: =0 $\begin{bmatrix} 2k - \lambda m_1 & -k \\ -k & 2k - \lambda m_2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2k - \lambda m_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $2k - \lambda m, - k = 0$ $= 7 Y_2 = \frac{2k - \lambda m_1}{k}, \quad Y = \frac{2k - \lambda m_1}{k}$ ー ** witwity wi -wins

0

Am - 2k k Case 1: $Y_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\omega_1 = \begin{bmatrix} k \\ m \end{bmatrix}$ Can 2: Y= (1) W= Jsk y(x) = Y, (x, cow, + + B, sine, +) + Y2 (x2cow) + prement) $= 7 \quad \forall_{1} = 1, \ \forall_{2} = 0$ $\begin{cases} 0 \\ 1 \end{cases} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \beta_{1} \omega_{1} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} \beta_{2} \omega_{2}$ $=7 \quad \beta_1 = \frac{1}{2\omega_1}, \quad \beta_2 = -\frac{1}{2\omega_2}$ $\frac{1}{1}\left(\omega_{1}+\frac{1}{2\omega_{1}}\sin\omega_{1}+\frac{1}{2\omega_{1}}\sin\omega_{1}+\frac{1}{2\omega_{2}}\sin\omega_$