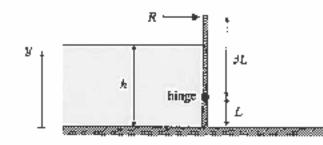
PIIA paper 1 2016



(a) The force on the gate is the integral of the hydrostatic pressure on its surface. On the air side $p = p_a$, and on the water side $p = p_a + pg(h + y)$, so the resultant is

$$F = \int_0^h \rho g(h-y) \mathrm{d}A = \int_0^h \rho g(h-y) \mathrm{d}x \mathrm{d}y = \rho g \mathrm{d}x \int_0^h (h-y) \mathrm{d}y = \frac{1}{2} \rho g \mathrm{d}x h^2.$$

(b) The moment of R on the bings is $M = 3RL_2$ and needs to balance the moment by the hydrostetic pressure, so

$$M = \int_{u}^{h} (\mathcal{L} - y)\rho g(h - y) \mathrm{d}A = \rho g w \int_{0}^{h} (\mathcal{L} - y)(h - y) \mathrm{d}y = \left(\mathcal{L} - \frac{1}{3}h\right) \frac{1}{2}\rho g w h^{2}.$$

The above expression can also be obtained from the value of F and its point of action, y = h/3. The reaction must then be

$$R = \frac{1}{16} \rho g w h^2 \left(\frac{3L - h}{L} \right),$$

which is zero for h = 0 and h = 3L, positive for 0 < h < 3L and negative for h > 3L.

Q2

Q1

(a) Viscons effects are negligible between 1 and 2, so Bernoulli's equation can be applied. We then have

$$p_1 + \frac{1}{2}\rho V_1^2 = p_2 + \frac{1}{2}\rho V_2^2,$$

O7

$$p_1 - p_2 = \frac{1}{2} \mu \left\{ V_2^2 - V_1^2 \right\} = \frac{1}{2} \mu V_1^2 \left[\left(\frac{V_2}{V_1} \right)^2 \left[-1 \right].$$

From continuity, $V_1A_4 = V_2A_2$, so substituting for V_2/V_1 we have

$$p_1 - p_2 = \frac{1}{2}\rho V_1^2 K_1,$$

with

$$K_1 = \left(\frac{A_1}{A_2}\right)^2 - 1.$$

(b) There is vigorous mixing and dissipation between 1 and 2, so Bernoulli's equation cannot be applied. Instead, the steady flow momentum equation can be applied to the flow in the pipe between sections 2 and 3. Neglecting friction forces at the walls we have

$$p_2 A_3 + \rho V_2 A_2 V_2 = p_4 A_3 + \rho V_3 A_3 V_3.$$

Note that p_2 acts on the whole section 2, including the back face of the expansion. From continuity, $V_2A_2 = V_3A_3$, but also $A_3 = A_1$ (and therefore $V_3 = V_3$), so substituting we have

$$p_2A_3 + \rho V_1A_1V_2 = p_8A_1 + \rho V_1A_1V_1$$

which gives

$$p_2 - p_3 = \rho V_1^2 \left(1 - \frac{V_2}{V_1} \right) = \rho V_1^2 \left(1 - \frac{A_2}{A_1} \right) = \frac{1}{2} \rho V_1^3 K_2,$$
$$K_2 = 2 \left(\frac{A_1}{A_2} - 1 \right).$$

with

(a) From the streamline convature,

$$\frac{\mathrm{d}\rho}{\mathrm{d}r} = \frac{\rho V^2}{r} = \mu \omega^2 r,$$

where τ is the distance to the axis of symmetry. Integrating between A and B we have

$$\int_{A}^{B} dp = \int_{r_{A}}^{r_{B}} \rho \omega^{2} r dr,$$

$$p_{B} - p_{A} = \rho \omega^{2} \int_{r_{A}}^{r_{B}} r dr = \frac{1}{2} \rho \omega^{2} r_{B}^{z}.$$

(b) Let point A be at the free surface. Point B will then be under a column of water of height Δh(τ_B). The pressure at A is the ambient pressure.

$$p_A = p_{a_2}$$

while the pressure at B will be

$$p_B = p_o + \rho g \Delta h(r_B).$$

The difference between them is $p_B - \mu_A = \rho g \Delta h(r_B)$, but must also satisfy the expression from (a), so we have

$$ho g \Delta h(r_B) = rac{1}{2}
ho \omega^2 r_B^2,$$

The shape of the free surface is then

$$\Delta h(r) = \frac{\omega^2 r^2}{2g}.$$

(c) The volume of water at rest is

$$\mathcal{V}=\pi R^2 h_{
m g}$$

and it must be the same when rotating. In the latter case, the volume can be calculated for instance as the sum of the volume of a cylinder of radius R and height $h_1 = \Delta h(R)$ and the volume under the paraboloid defined by $\Delta h(r)$ between r = 0 and r = R.

$$V = \pi R^2 (h_1 - \Delta h(R)) + \int_0^R \Delta h(r) 2\pi r dr,$$

Introducing the expression for $\Delta h(r)$ from (b), we have

$$V = \pi R^2 \left(h_1 - \frac{\omega^2 R^2}{2g} \right) + \int_0^R \frac{\omega^2 r^2}{2g} 2\pi r dr = \pi R^2 \left(h_2 - \frac{\omega^2 R^2}{4g} \right).$$

The relationship between h_1 and h_0 is observed.

$$h_1 = h_0 - \frac{1}{4} \frac{\omega^3 R^2}{g}.$$

The manifold to be ω is achieved for $h_1 = H_1$

$$\omega^{Z}_{sour}=rac{4g}{R^{2}}\left(H-h_{0}
ight).$$

(d) The shape of Δh(r) renalus northeograph, as follows from replacing part of the volume of water by an inducessal solid -i.e. the cone. The solution Δh(r) is only meaningful when the angle between the cone and the free surface at the contact point is positive, so

$$\left. \frac{\mathrm{d}\left(\Delta h(r)\right)}{\mathrm{d}r} \right|_{r=\mathrm{log}} \leq \mathrm{con}\left(45^\circ\right) = 1.$$

Substituting for $\Delta h(r)$ from (b) we obtain

$$\frac{\omega^2 h_1}{g} \leq 1.$$

If ω increases beyond that point, the free surface is not stable and some liquid excapes running up the case wills, until the remaining volume of liquid can satisfy the above condition.

Q4

(a) Applying isotropic relationships from the databasek for $T_2 = T_1 \left(\frac{p_2}{p_1}\right) \frac{q+1}{24}$, where $T_1 = 300$ K, $p_1 = 1$ bar, $p_2 = 4.5$ bar and $\gamma = 1.4$ $T_2 = 300$ K $\left(\frac{q_2}{4}\right)^{0.4/1.4} = 461$ K

Intraded solution - steady flow energy equations

- Applying the first law of thermodynamics assuming steady state steady flow $\frac{dkr \pi}{dt} = \Sigma \left(\dot{m}_1 \left(h_1 + \frac{g_1 \pi}{2} - g_2 \pi \right) \right) + \Sigma \left(\dot{m}_2 \left(h_2 + \frac{g_2 \pi}{2} + g_2 \pi \right) \right) = \dot{g} - \dot{W} \text{ and } \dot{m}_1 = \dot{m}_2$ $\dot{w} = h_1 - h_1 = c_p (T_1 - T_2) = 1.05 \text{ kJ} / (\text{kg K}) (300 \text{ K} - 461 \text{ K}) \rightarrow \boxed{\psi = -161.9 \text{ kJ} / \text{kg}}$ Alternative solution - constant volume $\dot{w} = w_1 - u_1 = c_q (T_1 - T_2) = 0.718 \text{ kJ} / (\text{kg K}) (300 \text{ K} - 461 \text{ K}) \rightarrow \boxed{\psi = -115.6 \text{ kJ} / \text{kg}}$ (b) Intended solution - sheady flow energy equation
- (c) Internate solution solution is charge (qualities The work is given as, $w_{12} = -200 \text{ kJ/sg}$. Applying the first law of thermodynamics assuming steady state steady flow results in $T_{2b} = T_1 - \frac{m_{12}}{r_p} = 300 \text{ K} + 200 \text{ kJ/kg} /(1.005 \text{ kJ/(lng K)}) \rightarrow \overline{T_{2b} = 499 \text{ K}}$

$$\begin{split} &\frac{d3}{\sqrt{4r}} - \Sigma \left[th_1 s_1 \right] + \Sigma \left[th_2 s_2 \right] = \int \frac{d\Phi}{T} + \dot{S}_{irren} \\ &\dot{S}_{irrev} = s_2 - s_1 \\ &\text{From the databook for perfect gases the change in specific entropy is} \\ &\Delta s_{12} = c_p \ln \left(\frac{T_{11}}{T_1} \right) - R \ln \left(\frac{p_2}{p_1} \right) = 1.05 \text{ kJ} / (\text{kg K}) \ln \left(\frac{480}{300} \right) + 0.287 \text{ kJ} / (\text{kg K}) \ln \left(\frac{48}{11} \right) \\ &\overline{\Delta s_{12} = 80 \text{ J/kg K}} \end{split}$$

Alternative solution - constant volume $T_{25} = T_1 - \frac{\mu_{52}}{c_1} - 300 \text{ K} + 200 \text{ kJ/kg} / (0.718 \text{ kJ/(kg K)}) \rightarrow \overline{T_{25}} = 578.6 \text{ K}$

$$\Delta s_{12} = c_{\rm p} \ln \left(\frac{T_{\rm ph}}{T_{\rm s}}\right) - R \ln \left(\frac{v_2}{r_{\rm t}}\right) = 1.05 \text{ kJ} / (\text{kg K}) \ln \left(\frac{518.6}{300}\right) - 0.287 \text{ kJ} / (\text{kg K}) \ln \left(\frac{c.5}{1}\right)$$

$$\Delta s_{12} = 228 \text{ J} / \text{kg K}$$

Q5

(a) Calculate the mass of sir within the balloon. Apply the ideal gas law to determine the mass in the balloon.
Solution and the mass of sir within the balloon.

 $m = \frac{v_{\rm Mar} y_1}{R_{\rm Mar} T_{\rm L}} = \frac{100,000 \ Ps \ G001 \ m^3}{237 \ J/(2g \ R) \ 200 \ R} \rightarrow \boxed{m = 0.0017 \ kg}$

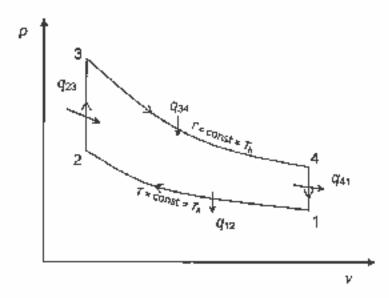
(b) To determine the final temperature, the first law of thermodynamics is applied

First Law $Q - W = \Delta U$ $\Delta U = m_{G_c} \Delta T$ $W = p_{\rm ntm} \Delta V \div \sigma \Delta A$ This formulation requires that ΔA be expressed by terms of ΔV $A = 4\pi R^2$ and $V = \frac{5}{3}\pi R^3$, therefore $R = (\frac{3}{4\pi}V)^{1/3}$ so that $A = 4\pi (\frac{3}{4\pi}V)^{2/3}$

$$T_2 = T_1 + \frac{1}{md_1} \left(Q - p_{\min} \left(V_2 - V_1 \right) - \sigma \left(4\pi \left(\frac{3}{4\pi} V_2 \right)^{2/3} - 4\pi \left(\frac{3}{4\pi} V_1 \right)^{3/2} \right) \right)$$

 $T_2 = 300 \text{ K} + \frac{1}{0.0007 \text{ kg } 287 \text{ J}/(\text{kg K})} (560 \text{ J} + 10^3 \text{ Pa} \langle 0.005 \text{ m}^3 + 0.001 \text{ m}^3 \rangle \\ -100 \text{ N}/\text{m} (4\pi (3/(4\pi)0.005 \text{ m}^3)^{2/3} - 4\pi (3/(4\pi)0.001 \text{ m}^3)^{2/3}))$

 $T_2 = 320.440$



- (a) $1 \rightarrow 2, q w = \Delta u$, where $\Delta u = 0 \rightarrow q = w$ with pdu < 0 therefore q < 0. Negative $2 \rightarrow 3, w = 0, q \Delta u$, with dT > 0 therefore $q > 0, \frac{\text{Positive}^{\dagger}}{3 \rightarrow 4, q w} = \Delta u$, where $\Delta u = 0 \rightarrow q = w$ with pdu > 0 therefore q > 0. Positive $4 \rightarrow 1, w = 0, q = \Delta u$, with dT < 0 therefore $q < 0, \frac{\text{Positive}}{1 \rightarrow 1, w = 0, q = \Delta u}$, with dT < 0 therefore $q < 0, \frac{1}{1 \rightarrow 1, w} = 0$.
- (b) $r_v = v_4/v_3 = v_1/v_2$ $q_{1n} = q_{23} + q_{34}$, where $q_{23} = \Delta v = c_v \Delta T = c_n(T_h - T_l)$ and $q_{34} = w_{34} = \int_0^4 p dv$ Using the ideal gas relation, $p = RT/v_i$ thus $q_{34} = \int_3^4 (RT/v) dv = RT_h \ln (v_4/v_3)$ $q_{34} = RT_b \ln (r_a)$ $q_{4n} = c_s (T_h - T_l) + RT_h \ln (r_v) = (c_v + R \ln (r_a))T_h - (c_n)T_l$ By inspection, $h_1 = (c_v + R \ln (r_v))$ and $h_2 = c_d$.

$$\langle e \rangle = \{i\} \ \eta = \frac{\eta_{inst}}{\eta_{ins}} = 1 - \frac{|q_{max}|}{\eta_{ins}} = 1 + \frac{\langle q_{ij} + q_{ij} \rangle}{\eta_{ins} + \eta_{ij}}$$

$$\begin{split} q_{52} &= R \, T_{\rm f} \ln \left(r_{\rm g}^{-1} \right) = -R \, T_{\rm f} \ln \left(r_{\rm v} \right) = -287 \, {\rm J}/({\rm kg} \, {\rm K}) \, 300 \, {\rm K} \ln \left(6 \right) = -154.3 \, {\rm kJ/kg} \\ q_{41} &= c_{\rm v} (T_{\rm f} - T_{\rm h}) = 716 \, {\rm J}/({\rm kg} \, {\rm K}) \, (300 \, {\rm K} - 1400 \, {\rm K}) = -789.8 \, {\rm kJ/kg} \\ q_{23} &= c_{\rm v} (T_{\rm h} - T_{\rm h}) = 718 \, {\rm J}/({\rm kg} \, {\rm K}) \, (1400 \, {\rm K} - 300 \, {\rm K}) = 789.8 \, {\rm kJ/kg} \\ q_{34} &= R \, T_{\rm h} \ln \left(r_{\rm e} \right) = 287 \, {\rm J}/({\rm kg} \, {\rm K}) \, 1400 \, {\rm K} \, \ln \left(6 \right) = 719.9 \, {\rm kJ/kg} \\ \eta &= 1 - \frac{164.3 \pm 759.9}{720.3 + 719.9} = 0.375 \rightarrow \boxed{\eta = 37.5\%} \end{split}$$

(ii) With the regenerator the heat from q_{i1} is used as an input to q₂₃. Thundom,

$$\begin{split} \eta &= 1 - \frac{|q_{ex}|}{q_{e1}} = 1 - \frac{|n_{e1,1}|}{r_{10,0}} = 0.786 \rightarrow \boxed{\eta = 78.6\%} \text{ or} \\ \eta &= 1 - \frac{RT_{1}\ln(r_{e})}{RT_{1}\ln(r_{e})} = 1 - \frac{T_{1}}{7r_{e}} = 1 - \frac{360}{1400} = 0.786 \end{split}$$

(d) To determine the heat transformed into the engine for $c_v = \alpha + \beta T + \gamma T^2$, where $\alpha = 610 \text{ J/kg K}$, $\beta = 0.3 \text{ J/kg K}^3$, $\gamma = 7 \times 10^{-5} \text{ J/kg K}^3$, requires $q_{bb} = q_{23} + q_{34}$. Here $q_{23} = \int_2^3 c_v dT = \int_2^3 (\alpha \div \beta T + \gamma T^2) dT \equiv \alpha (T_b - T_l) + \frac{2}{2} (T_b^2 - T_l^2) + \frac{2}{3} (T_b^2 - T_l^3)$

Q6

 $q_{23} = 610(1400 - 300) + \frac{0.3}{2}(1400^2 - 300^2) \div \frac{7 \times 10^{12}}{3}(1400^3 + 300^3) = 1014.9 \text{ kJ/kg}$

From part (c), $q_{14} = 719.9 \text{ kJ/kg}$

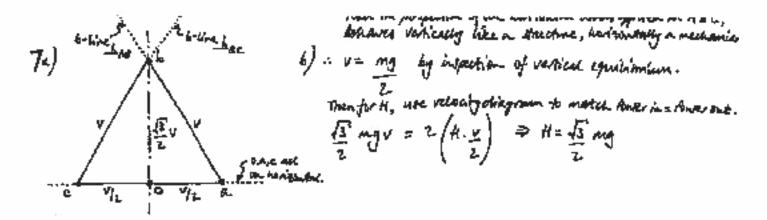
 $q_{\rm in} = 1014.9 \text{ kJ/kg} + 719.9 \text{ kJ/kg} = 1734.8 \text{ kJ/kg}$

The efficiency is determined in the same manner as before

 $\eta = 1 - \frac{n_{12} - n_{21}}{q_{22} + q_{34}}$

 $\begin{array}{l} q_{12} = -154.3 \ {\rm kJ/kg} \\ q_{41} = -q_{21} = -1014.9 \ {\rm kJ/kg} \\ q_{22} = 1014.9 \ {\rm kJ/kg} \\ q_{23} = 719.9 \ {\rm kJ/kg} \end{array}$

 $\eta = 1 - \frac{3.51.2 - 1.014.08}{1014.8 + 119.9} = 0.326 \rightarrow \boxed{\eta = 32.0\%^4}$



Ba) At max extension, both above at some space V. Momentum conserved.

$$2mV = (2m+m)V_1 \quad \therefore \quad KE \quad before = \frac{1}{2}(2m)V^2 = mV^2$$
 . Non-consider Carry knowned
 $V_1 = \frac{2V}{3} \quad \Rightarrow \quad KE \quad after = \frac{1}{2}(3m)(\frac{2V}{3})^2 = \frac{2mV^2}{3} \quad \therefore \quad KE \quad cable = \frac{mV^2}{3}$

b) Cable is light not remides, but not marten ... EPE converted by KE of able ends + some sound.

$$\frac{V_{\text{end}} - V_{6}}{i} = A \underbrace{i}_{1} \qquad \frac{V_{\text{end}}}{j} - \frac{V_{8}}{j} = e\left(\frac{1}{\sqrt{2}} \underbrace{i}_{1} + \frac{1}{\sqrt{2}} \underbrace{j}_{1} + \frac{1}{\sqrt{2}}$$

Ball must cover 7m @ 4.83 m/s => flight the = 1.45 s .: 8 moved 2×1.45 = 2.90 m (i.e. R bays pace with the ball in the j direction ; from \$'s progrative, the Real approaches parely in i direction./ Q10

 \bigcirc

0

C

(a)
$$\Delta E = (T + V) - V_0$$

$$= \left(\frac{1}{2}O^2 - \frac{M_q}{r_0 + R} + \frac{M_q}{R}\right)m$$

$$= \left(\frac{1}{2}(7900)^2 - \frac{6 \times 10^{24}}{(1200 + 6400) \times 60^3} + \frac{6 \times 10^{24}}{6400 \times 10^3}\right)m$$

$$= 7 41.08 \times 10^6 J k_g^{-1}$$
With $10^8 J$ for learch $m = \frac{1 \times 10^{11}}{41.08 \times 10^8}$

$$= \frac{24.34}{4.08 \times 10^6} K_g^{-1}$$
(b) Use conservation of anomary of momentum:
 $U_0 m T_0 = U_1 p T_1$

$$\therefore T_1 = \frac{U_0 T_0}{\sqrt{T_1}} = \frac{7900(1200 + 6400) \times 10^6}{54.31}$$

$$= 11,060 \text{ km}$$

The altitude therefore is 11060-6400 = 4660 km

 \bigcirc Q.11 Vý free body diagram m 19 V ky (a) f1 ky xy-ky=mg F=ma 7 fStandom form g =<u>f</u>____ My 5 1.2 From p. 9. of date book 5 2 0.48 to keep / X/Y/ 5 1.2 @ W= 0.8Wm (4) }

0 Q12 M Fame an each most $\frac{M}{2} = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}, \quad \frac{C}{2} = \begin{bmatrix} 2\lambda & -\lambda \\ -\lambda & \lambda \end{bmatrix}$ $\frac{k}{-k_2} = \frac{k_1 + k_2}{-k_2} + \frac{-k_2}{k_1 + k_2} + \frac{f}{-k_2} = \begin{bmatrix} f \\ 0 \end{bmatrix}$ (b) $det(\underline{K} - \underline{X}\underline{M}) = 0$ $1 = w^2$ $\begin{vmatrix} 2k - \lambda m, -k \end{vmatrix} = 0$ (2k- xm.)(2k-xm2) - K= 0 => Xin = K mi + m2 = /mi + m2 - mime W= JA, w= JA () (K->iM)Yi=0 $\frac{2k-\lambda m}{-k} - \frac{k}{2k-\lambda m} \left[\frac{1}{2k} - \frac{1}{2k} \right] = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 2k-xm, -k12 = 0 $= \frac{2k - \lambda m_{i}}{k}, \quad \frac{Y_{i}}{k} = \frac{2k - \lambda m_{i}}{k}$ The line and the second and

O Q n (cup) Am - 2k k (4) $\frac{I: Y_{i}}{\omega_{i}} = \begin{bmatrix} I \\ I \end{bmatrix}, \quad \omega_{i} = \int_{\omega_{i}}^{k} \frac{\omega_{i}}{\omega_{i}}$ y(A) = Y, (x, cow, t + B, snu, t) + Y, (racount + present) t = 0: $\left[\frac{1}{1} \right] = \left[\frac{1}{1} \right] d_1 + \left[\frac{1}{-1} \right] d_2$ $=1, \alpha_2 = 0$ je to: $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix}$ $=7 \quad \beta_1 = \frac{1}{Z\omega_1} \quad \beta_2 = -\frac{1}{Z\omega_2}$ $(\omega u, t + \frac{1}{2\omega_1} \sin u, t) - \frac{1}{-1} \frac{1}{2\omega_2}$ since t 4