Engineering Tripos Part 1a 2016 Paper 2: CRIB

1: Many candidates gave perfect answers to this question. Of those that didn’t, many failed to
calculate the reactions carefully, and the most common error was to have non zero bending
moments in the right side vertical section of the frame. Because the support at B is on wheels,
there can be no horizontal reaction at B, so therefore the bending moment all along the vertical

leg ending at B must be zero.
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2: Most candidates correctly used the formulae for the second moment of area of a rectangular
section and the parallel axis theorem. The fact that t was much smaller than B means that the
second moment of area of the twa flanges about their own axes could be discarded, but the
second moment of area of the web was still important, as was the second term of the parallel
axis theorem for all three components. Candidates who worried about whether the flanges were
separated by B, B+t, or B+2t, made their lives harder, and often made algebraic errors. Because t
is small compared to B, this distance could be treated as B from the outset. Separately, it is much

easier to find the centroid by taking first moments of area about the bottom of the beam rather
than taking them about the centroid itself.
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3. What is ambiguous about "use GRAPHICAL METHODS ONLY"? Many candidates
tried to calculate the forces in the members by writing down equilibrium equations at A, and
most then got the arithmetic wrong, or they took the cosine of the force F in the directions AB
and AC, which is nonsense. Many took no account of the fact that one of the members is twice as
long as the other so they got the extensions wrong. Many candidates drew diagrams the size of
postage stamps and then measured lengths to the nearest centimetre. By all means make a
sketch but then draw a diagram to scale as large as possible to maximise accuracy. Quite a
lot took no account of the sense of the displacement - it matters! Most used rulers and some
used protractors but it would have been a lot easier to draw both the displacement diagram
and the force polygon on graph paper, which was provided. Freehand sketches got zero
marks. It should be possible to get better than 1% accuracy by drawing although the paper
was marked more leniently.
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4. Many candidates couldn't get started on this question because they didn't think clearly.

First identify all the forces acting

Clearly there are four forces on each of the cylinders B and C, and only three equilibrium
equations, so the system is indeterminate. But note that when the cylinders move, B loses
contact with the drum, so Q=0 and C loses contact with D, so Rgp=0. Drawing two
polygons of forces leads to the solution. (Note that many candidates tried to do this problem
by writing down equilibrium equations but there are so many different angles involved that
very few got the correct answer.)




IR/2014/2-/4/2.

Alternatively, one candidate considered B and C as a single object. This is allowable because
even though they slide relative to one another, they remain in contact. It thus becomes a
three force problem and simple geometry shows that the resultant force acts through the mid-
point of BC, so this must be the centre of gravity of the two cylinders so Wc=Wa.

Another alternative is to calculate the speed of motion using a velocity diagram or
instantaneous centres and then to calculate the work done against gravity by B and C, which
leads to the same result.

Valo by Dimgram



5: This question was generally answered well and many candidates achieved full marks. Several
candidates failed to calculate the horizontal load on the cable correctly, as they ignored the self
weight of the cable when taking moments about the mid-point. A surprising number of
candidates failed to convert the forces on the cable end points to the equal and opposite forces
on the truss. A small number of candidates calculated real work instead of virtual work (ie they
summed the product of all real bar tensions and extensions), so inadvertently found the total
displacement of node C. In this case, treating the horizontal and vertical real loads on the tower
separately was unhelpful and led to many algebraic errors, while those candidates who
identified that the virtual tensions were only non-zero in two bars saved themselves a lot of time.
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These graphs were not needed for the solution but many candidates clearly assumed that the
base of the chimney was critical but these graphs show that this was not the case.

The moment reduces below P (values calculated for critical value density).
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SECTION B

7 (short)

(a) Nominal and true tensile stress-strain curves:
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(b) Initial and final dimensions of the cube:
L
L
L,

Height of the cube: After one loading to a nominal compressive strain of 0.1, the new
height will be 0.9L. After two it will be 0.9 X 0.9L. And so the the final height after

compressing n times will be:  L; = (0.9)"L

Alternatively, if the nominal strain g, = —0.1, the true strain for each deformation step is:
& =In(1+¢&,) =1n(0.9)
True strains are additive, so the total true strain for n steps: & = nlIn(0.9)

Converting this back to nominal strain:
gn = exp(nIn(0.9)) — 1 = (0.9)" — 1 = LB 1) — 0.9y




Width of the cube: Assume conservation of volume during plastic deformation (the

material is rigid perfectly plastic, so there is no elastic contribution, though this is often
neglected anyway during plastic straining):

=113 so L= W

Examiner’s comment: For part (a), the nominal stress-strain curve was done well. Most
problems occurred with the true case, with few completely correct solutions. Another
common problem was forgetting to label key quantities. Part (b) was similar to an
examples paper question on a multi-stage ‘tandem’ rolling mill, but was done surprisingly
badly. Some candidates could almost write down the solution for L; by inspection,
and then went on to use conservation of volume correctly. But a large number over-
complicated it. It was common to attempt to solve an elasticity problem, even though
the material is rigid-perfectly plastic. Many got in a mess converting between true and

nominal strains.



8 (short)

(a)

Process zone:

o The process zone is a region of inelastic deformation near to the crack tip.

o It will locally affect the elastic stress field, and hence the suitability of linear elastic

fracture mechanics (i.e. K) to model it.

o If the process zone is not small compared to the crack length and specimen dimensions

(the data-book recommends a factor of 50), K = Kj¢ cannot reliably be used to predict

failure.

(b)

o Mg alloy: 6, =400 MPa (Data Book range: 70 — 400 MPa)

Fracture toughness (Data Book): Kjc =12 to 18 MPa m!/2,

Stress at failure: oy = % =20.1 to 30.2 MPa. Higher strength alloys
will generally have a lower toughness, so the best estimate would be at the lower
end of this range.

2

Validity: process zone size (Data Book) r), ~ # =0.286 to 0.645 mm. This
Y

is small compared to the crack length a, and even though it is not quite the
recommended 50 times smaller, it is probably reasonable to apply linear elastic
fracture mechanics.

o Alalloy: o, =50 MPa (Data Book range: 30 — 500 MPa)

Fracture toughness (Data Book): K;c =22 to 35 MPa m!/2,

Stress at failure: opp = 3 3?\;5 =36.9 to 58.8 MPa. Lower strength alloys will

generally have a higher toughness, so the best estimate would be at the upper end

of this range.

Validity: op s ~ Oy, and the process zone size rp ~ 62 to 156 mm > a. Failure is
therefore likely to be by extensive yielding, and so an estimate using linear elastic
fracture mechanics is not reasonable.

Examiner’s comment: Part (a), a discussion of the process zone size, was done well, with

most able to pick up some marks. A common error was to reproduce a sketch from the

notes showing a stress-free region around a crack, and discussing strain energy release. A



number of answers were rather unfocussed, fishing for marks. Part (b), plugging numbers
into the given stress intensity factor equation, was done surprisingly badly. Most could
look up fracture toughness values for the materials given. A mark for picking a value
near the appropriate end of the range was claimed by only one or two (most common
was to take mid-range values, with the rest assuming high yield strength alloys must have
high fracture toughness). It was also surprisingly common to incorrectly take ‘a’ to be
the process zone size, rather than the crack length (given in the question). Discussing the
applicability of the stress intensity factor (part (a) was a hint towards the answer) was
not done well on the whole. There was a lot of misunderstanding between the physical
meaning of the yield stress and the stress at fracture in the presence of crack.



9 (short)

(a) Forr >0, g(t) = g is constant, and &(r) = 0. The differential equation becomes

and is solved by (¢) = ope E!/M. At1 =07, the step of strain implies an infinite strain
rate and the dashpot “locks up”. Only the spring can respond to the strain, and the stress
is then 6(0") = o = &yE. Finally,

E
o(t) = gyE exp <_HI) fort > 0.
as stated. [6]

(b)  From the graph, we see that o (¢) falls by a factor 2 in 1405, so that

n 140 =1 m2

E 1 E In2 0.1 GPa x 140
exp(——140> = _ 0 = ax >

to finally get
N ~20GPas.

Note that the Maxwell approximation does not fit very well the data, so that answers
between about 10 and 50 GPa's may be found, depending on which points are used on the
graph. (4]

Examiner’s comment: Part (a), solving the differential equation, was done reasonably
well using various methods, but the initial condition was rarely justified. For part (b),
extracting parameters from an experimental graph, some candidates used the initial slope
of the experimental curve, which is not a precise method. Few candidates compared
values obtained at different time points, and rightfully concluded the exponential fit was
not ideal. Viscosity results given without units, or with the wrong units, were penalised.
The units for viscosity could easily be deduced from the time constant of the exponential

law given in (a), for example.



10 (short)

(a) We use the equations of the Materials Data Book with a volume fraction Vi = 0.5
since both materials occupy the same volume in the laminate. Hence:

E\+E
Err =
11 ) 5
—1
1 1
E =2 —+— 3
+ (El +E2) Bl

o Loading in x direction: loading parallel to the 3 main layers, where the outer layers

have E | and the inner layer has Ej;. Hence:

Ey

:EH+EL:1{E1+E2 2(1 N 1)1}
L . .

2 2 E| ' E

o Loading in y direction: loading parallel to the 3 main layers, where the outer layers

have Ej; and the inner layer has E | . Hence:
Ey — Ex

o Loading in z direction: loading perpendicular to the 3 main layers, where both the

outer layers and the inner layer have Ej;. Hence:

~1
1 1 Ey\+E;
E=2(—+—| =fg;="1172 7
: <E11+E11> " 2 7l

Examiner’s comment: A few candidates obtained a wrong volume fraction, which is a
dimensionless quantity, in part (a) about the effective modulus of a laminar composite.
For part (b), the vast majority of candidates understood how to obtain the effective moduli
of the hybrid composite in relation to part (a). Full marks were only awarded when the
calculations were properly explained. The z-direction caused the most problems, even
though the same principles as in the other 2 directions apply.



11 (long)

() Maximum moment (from Fig. 11):

_ RL

M
0=y

Maximum deflection (Structures Data Book, section 4.5.2, case 4):

MyL? bd> FL\ [ L? 12 RL?
50 = Y I - ] ... 50 - — — =
6EI 12 4 6E | \ bd3 2Ebd3
Maximum stress:
Moy d F()L d 12 3FOL
=" YTy 0 ( 4 )\2)\ba3) ™ 20a2 (]

(b) (i) Objective: minimise d
Functional constraint: oy < o
Geometric constraints: d = free; L, b = fixed [3]

(i1) Functional constraint:

3FyL 3Rl
e = — d o -
=2 T \ 2bo;

Substitute free variable into the objective equation:

3/2
s Fol3 (2bo,\ 32 Gf/ L /2IN32  p 12
0= 2Ep \3R,L) ~ E |2\ 3 F
Therefore maximise the material index: E/ G;/ 2 [5]

(i11)) Using the Young’s modulus - strength chart, and the line corresponding to
6;/ 2 /E = C, the best options will be in the top-left corner of the chart where E is

high and o low. The best choices are therefore: Cu alloys, Pb alloys and Al alloys.

Natural materials and composites are not suitable, as it is not possible to
manufacture components on this scale. The device has dimensions ~ um, which
is likely to be smaller than the microstructural length scales of these materials (e.g.
the cell size in natural materials, or the size of reinforcing particles or fibres in
composites). [4]



() @

o Constraint 1: maximum deflection

RL?

" 2Ebd3

NNV
5, FoL )

< =2 : > | —
< max pm, od = <2Eb5max

o Constraint 2: maximum stress

1/3
3FL _ 3FL
Gozwﬂ(?f, “d2<%)

Evaluate d for both constraints:

Material Constraint 1, d(um) | Constraint 2, d(um)
Silicon nitride 5.57 3.16
Aluminium 8.94 12.2
Nickel 6.30 1.07

The value of d for the active constraint (the largest value for each material) is
underlined.

(i1)) For each value of d, evaluate the objective: m = pLbd.

Material Mass m (kg x 10_12) Rank
Silicon nitride 6.68 1
Aluminium 13.2 2
Nickel 25.2 3

Examiner’s comment: This question was done well by most. Most candidates were able
to derive the formulae correctly in part (a). A number chose not to use the recommended
section of the data book though, opting instead to superimpose cantilever cases. Part (b)
is a conventional performance index derivation, and most knew the correct procedure.
Most marks were lost applying the material index to the data book selection chart, and
shortlisting materials. Common errors were getting the slope of the line wrong, or
heading to the wrong corner of the chart to maximise the index. Generic remarks on
the unsuitability of composites and natural materials, not considering the micron-scale
of the part, didn’t score well. Part (c) increased the complexity by changing the objective
and adding two constraints. Again, most knew the correct procedure for identifying the
active constraint and then minimising the objective. Most marks were lost with errors
plugging numbers in to evaluate the free variable (‘d’). This was complicated by the

dimensions being in microns, which seems to have caused calculator problems.

[8]



12 (long)

(@) (1) The mass per unit x-length of the upper portion of the wall between the
distance z and H from the base is given by pA(z), where A(z) is the area of the
portion in the (y,z)-plane:

H / /
AG) = [ D)z
Z
H H
P8 / P{ ( P8 /)}
= | Dpexp|——27 )d = —Dy— |exp| — ==
/ZOP(PZ)Z ong PZz
P P8\ _bpg
_Dopg[eXp( PZ) eXp( PH)}'

Finally the mass per unit length of the upper portion is

PA(z) = % [exp<—p—§z) —exp <—%H>] = g [D(z)=D(H)].  [5]

(i1)) Consider the free body diagram of the section of the wall between its base and
the distance z from the ground. The vertical forces per unit x-length acting on the
section of width D(z) are the pressure PD(H) and the weight of the upper portion
pgA(z). From the previous question we see that the total force F; per unit length is

F(z) = PD(H) + pgA(z) = PD(z) .
Dividing F;(z) by D(z) to get the stress, we finally obtain:

0;(z) =P independent of z. [3]
(i11)) 3D Hooke’s law in the wall reads:

1

& = E(Gx—vcy—vaz),

g = l(csy—vcx—vcrz),
E

g = l(cyz—vcx—vcry).
E

With & = 0 (infinitely long in the x-direction), oy = 0 (slender wall) and o, = P
(from the previous question), the first equation gives 6y = VP and the last one finally
gives

1 1—v3)P
&= E(P—vcx) = % [7]



(b)

) ) AH
(iv) For low strains, &, = R so that:

(1—v2)HP
- :

AH =

With the conventions used here (positive compressive strain), AH > 0 corresponds
to a decrease of the height from the undeformed state. Using the values given for

concrete,
AH  (1—-0.22)x 0.8 x 20MP,
AH _ (1-0.27) x08x20MPa o 04 ¢ 1q,
H 17 x 103MPa
This is indeed a small strain. [3]

(i) From Hooke’s law in 3D, the strain’s x, y-components in the adhesive read:

1
Eax = _( ax — VaOa,y — VaGa,z) )
Eqy

€a,y = E_~a(6a,y — VaOa x — VaGa,Z) .

Here &, x = €a,y = 0 (the adhesive remains bonded) and 6, ; = P. Inspection of the
two relations above indicates 0y x = 0a,y. Substituting in one of them gives:

Vo P
Oax = Oayy = I— vy [7]

(i) Since the thermal strain is compressive, it must be added as a positive strain
in each direction (convention of positive compressive strain). Hence the Hooke’s
law in the x and y directions now reads:

1
€ax = E_a(Ga,x —VaOay— VaGa,Z) + O‘|AT‘ )

1
€y = E—a(Ga,y — VaOax — VaOa,z) + QAT

The conditions & x = &,y = 0 (the adhesive remains bonded) and o; = P are not
changed. Again, inspection of these two relations above indicates Gpx = Oay.
Substituting into one of them now gives:

VaP — Eq0|AT |
1—v,

Oax = Oay =

)

indicating that the compressive horizontal stress is reduced upon cooling. [5]



Examiner’s comment: This was the final question on the paper, and candidates appear to
run out of time. Part (a) considered a wall whose geometry is such that its stress under
self-weight is uniform throughout. The algebra was simpler than in similar examples
paper questions. But, a lot of candidates took very long routes to solve the system of
equations from Hooke’s law, increasing the likelihood of mistakes along the way, and
ended up running out of time. The numerical result was rarely commented. In part (b),
the calculations based on 3D Hooke’s law were again very similar to the ones found in the
examples paper, but a large number of candidates wasted a lot of time deriving the result
Oax = Og,y that can be readily justified with symmetry. The last part dealt with thermal
strain, which seems to be well understood, and was generally addressed correctly by the
candidates who had the time to attempt it. Among them, most correctly used their physical

intuition to explain the change in stress with temperature.

END OF PAPER
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