WORKED SOLUTIONS

Paper 3

ELECTRICAL \& INFORMATION ENGINEERING

Section A - Joyce
 Section B - Hasan
 Section C - Ferrari/Malliaras

SECTION A

Question 1

(a) The numbers are chosen so that there is no need for a calculator

Convert left hand side to Norton equivalent:

Combine the current sources:

Convert left hand side to Thevenin equivalent:

Then, add the 40Ω and 10Ω resistors in series:

Convert left hand side to Norton equivalent:

Then, combine the 50Ω and 200Ω resistors in parallel:

Convert left hand side to Thevenin equivalent:

Add the voltage sources:

Convert left hand side to Norton equivalent:

Add 40Ω resistors in parallel to achieve Norton equivalent:

Convert to Thevenin equivalent:

Examiner's comment: Most students answered this sub-question capably by doing a sequence of Thevenin and Norton simplifications, but many students made errors as a result of taking shortcuts. Common errors were:

- Neglecting the units (especially ohms)
- Summing currents incorrectly into a node (e.g. adding 25 mA and 5 mA when they should actually be subtracted).
- Adding resistances in series when they should be added in parallel. A number of students started the process from the right hand side (nearest the terminals), which is always the more difficult approach and was more likely to result in errors.
A small number of students attempted to simplify the circuit through nodal or loop analysis. All these students found themselves lost in a sea of algebra and made errors. It is easier to sequentially perform Thevenin and Norton simplifications.
(b) Power to the load is maximised when $R_{L}=\mathbf{2 0} \boldsymbol{\Omega}$

The current through this load will be $1 / 2 \times 25 \mathrm{~mA}$.
The voltage across this load will be $1 / 2 \times 0.5 \mathrm{~V}$.

Power dissipated by load $=\mathrm{VI}=\mathrm{I}^{2} \mathrm{R}_{\mathrm{L}}=0.0125^{2} \times 20=\mathbf{3 . 1 2 5} \mathbf{~ m W}$
Alternatively,
Power dissipated by load $=\mathrm{VI}=\mathrm{V}^{2} / \mathrm{R}_{\mathrm{L}}=0.25^{2} / 20=\mathbf{3 . 1 2 5} \mathbf{~ m W}$

Examiner's comment: Most students correctly identified that maximum power is transferred when the load resistor matches the Thevenin or Norton resistance. A handful tried to derive this from first principles (differentiating), which was actually
unnecessary. A fair number of students miscalculated the power lost across the load and got an answer that was 4 times higher than it should be.

Question 2

(a)
$i=\frac{v_{i n}}{R+j \omega L \| 1 / j \omega C}$

Resonance occurs when the impedance of the capacitor negates the impedance of the inductor:
$\omega L=1 / \omega C$
$\therefore C=\frac{1}{\omega^{2} L}=\frac{1}{\left(2 \pi \times 24 \times 10^{3}\right)^{2} \times 90 \times 10^{-6}}=489 \mathbf{n F}$
(b) At 24 Hz , the impedance of the inductor is:

$$
\mathrm{Z}_{\mathrm{L}}=\mathrm{j} \omega \mathrm{~L}=\mathrm{j} 2 \times \pi \times 24 \times 10^{3} \times 90 \times 10^{-6}=\mathrm{j} 13.57 \Omega
$$

At 24 Hz , the impedance of the capacitor is:

$$
\mathrm{Z}_{\mathrm{C}}=1 / \mathrm{j} \omega \mathrm{C}=1 /\left(\mathrm{j} 2 \times \pi \times 24 \times 10^{3} \times 100 \times 10^{-9}\right)=-\mathrm{j} 66.31 \Omega .
$$

Total impedance of the circuit $\mathrm{Z}_{\text {total }}=\mathrm{R}+\mathrm{Z}_{\mathrm{L}} \| \mathrm{Z}_{\mathrm{C}}$:

$$
\begin{aligned}
& Z_{\text {total }}=10+\mathrm{j} 13.57 \| \mid-\mathrm{j} 66.31=10+\mathrm{j} 17.06=19.8 \Omega \angle 59.6^{\circ} \\
& \mathrm{I}_{\mathrm{rms}}=\mathrm{V}_{\text {rms }} / Z_{\text {total }}=200 /\left(19.8 \Omega \angle 59.6^{\circ}\right)=10.1 \angle-59.6^{\circ} \\
& \mathrm{I}_{\text {peak }}=\sqrt{ } 2 \mathrm{I}_{\text {rms }}=\mathbf{1 4 . 3} \mathbf{A} \angle \mathbf{- 5 9 . 6 ^ { \circ }}
\end{aligned}
$$

In this case the current lags the voltage, because the load is predominately inductive.

Examiner's comment: A small number of students made errors in calculating the impedance of the circuit, some adding the reactances in series rather than in parallel. Many students only gave the rms current, but not the peak current. The strongest students explicitly stated that the current lags the voltage. Some students gave the phase in radians, which was marked correctly but degrees would be preferable.

Question 3

(a) The impedance of the load referred to the primary is:

$$
\mathrm{Z}_{\mathrm{L}}{ }^{\prime}=\left(\mathrm{N}_{1} / \mathrm{N}_{2}\right)^{2}(0.3+\mathrm{j} 0.2)=(10)^{2}(0.3+\mathrm{j} 0.2)=\mathbf{3 0}+\mathbf{j} \mathbf{2 0} \boldsymbol{\Omega}
$$

(b) The load current referred to the primary, I_{L} ' is:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{L}}{ }^{\prime} \quad=240 /\left(\mathrm{Z}_{\mathrm{L}}{ }^{\prime}+R_{1}+R_{2}{ }^{\prime}+X_{1}+X_{2}{ }^{\prime}\right)=240 /(40+\mathrm{j} 30) \\
& \left|\mathrm{I}_{\mathrm{L}}{ }^{\prime}\right|=4.8 \mathrm{~A}
\end{aligned}
$$

The actual load current is:

$$
\begin{aligned}
\left|\mathrm{I}_{\mathrm{L}}\right| & =\left(\mathrm{N}_{1} / \mathrm{N}_{2}\right) \times 4.8 \\
& =\mathbf{4 8} \mathbf{~ A}
\end{aligned}
$$

(c) The real power dissipated in the load is:

$$
\begin{aligned}
\mathrm{P} & =\mathrm{I}_{\mathrm{L}}{ }^{\prime 2} \mathrm{R}_{\mathrm{L}}{ }^{\prime}=4.8^{2} \times 30 \\
& =\mathbf{6 9 1 . 2} \mathbf{~ W}
\end{aligned}
$$

Or alternatively:

$$
\begin{aligned}
\mathrm{P} & =\mathrm{I}_{\mathrm{L}}{ }^{2} \mathrm{R}_{\mathrm{L}}=48^{2} \times 0.3 \\
& =691.2 \mathrm{~W}
\end{aligned}
$$

The reactive power is:

$$
\begin{aligned}
\mathrm{P} & =\mathrm{I}_{\mathrm{L}}{ }^{2} \mathrm{X}_{\mathrm{L}}=48^{2} \times 0.2 \\
& =\mathbf{4 6 0 . 8} \mathbf{~ V A R}
\end{aligned}
$$

(d) The power loss $\mathrm{P}_{\text {loss }}=\mathrm{I}_{\mathrm{L}}{ }^{\prime 2}\left(\mathrm{R}_{1}+\mathrm{R}_{2}{ }^{\prime}\right)=4.8^{2}(6+4)=\mathbf{2 3 0 . 4} \mathbf{~ W}$

$$
\mathrm{P}_{\text {in, total }}=230.4+691.2=921.6 \mathrm{~W}
$$

Efficiency $=230.4 / 921.6$

$$
=0.75 \text { (i.e. 75\%) }
$$

Examiner's comment: Common errors were:

- Misunderstanding that X denotes an imaginary component (reactance).
- In (a), neglecting the units (ohms).
- In (b), only calculating the load current referred to the primary. The full, correct answer is the load current referred to the secondary winding, which is the actual load current.
- In (c), calculating the total real and reactive power dissipated, rather than the power dissipated in the load.
- In (d), misunderstanding the definition of transformer efficiency. Many students calculated efficiency incorrectly as the ratio of apparent power out/in. The correct definition is the ratio of real power out/in.

Question 4

(a)

which can be re-drawn as:

(b) and (c)

Input impedance $R_{\text {in }}=R_{1}=10 \mathrm{M} \Omega$
Gain

$$
v_{\text {out }}=g_{m} v_{g s}\left(R_{2} \| r_{d}\right) \quad \text { equation } 1
$$

$$
v_{g s}=v_{\text {in }}-v_{\text {out }} \quad \text { equation } 2
$$

Using equations 1 and 2 and eliminating $v_{g s}$ gives

$$
\begin{aligned}
& v_{\text {in }}-v_{\text {out }}=\frac{v_{\text {out }}}{g_{m}\left(R_{2} \| r_{d}\right)} \\
& \therefore v_{\text {in }}=v_{\text {out }}\left(\frac{1}{g_{m}\left(R_{2} \| r_{d}\right)}+1\right) \\
& \therefore \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{1}{\left(\frac{1}{g_{m}\left(R_{2} \| r_{d}\right)}+1\right)} \\
& \therefore \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{g_{m}\left(R_{2} \| r_{d}\right)}{1+g_{m}\left(R_{2} \| r_{d}\right)}
\end{aligned}
$$

Knowing that $R_{2}\left\|r_{\mathrm{d}}=5 \mathrm{k}\right\| 20 \mathrm{k}=4 \mathrm{k} \Omega$, we can calculate the gain as

$$
\begin{aligned}
\frac{v_{\text {out }}}{v_{\text {in }}} & =\frac{10 \times 10^{-3}\left(4 \times 10^{3}\right)}{1+10 \times 10^{-3}\left(4 \times 10^{3}\right)}=40 / 41 \\
& =\mathbf{0 . 9 7 6} \\
& \approx \mathbf{1}
\end{aligned}
$$

This value (unity!) is expected for a source-follower (also known as a unity gain buffer)
Output impedance: Short circuit the input. Apply a test current i_{x} and test voltage v_{x} to the output terminal.

$$
\begin{aligned}
& \therefore v_{x}+g_{m} v_{x}\left(R_{2} \| r_{d}\right)=i_{x}\left(R_{2} \| r_{d}\right) \\
& \begin{aligned}
R_{\text {out }} & =\frac{v_{x}}{i_{x}}=\frac{\left(R_{2} \| r_{d}\right)}{1+g_{m}\left(R_{2} \| r_{d}\right)} \\
& =\frac{\left(4 \times 10^{3}\right)}{1+10 \times 10^{-3}\left(4 \times 10^{3}\right)} \\
& =\mathbf{9 7 \Omega}
\end{aligned}
\end{aligned}
$$

High input impedance, low output impedance, unity gain.
(d)

$$
\begin{array}{ll}
v_{\text {out }}=i R_{2} & \text { equation 1 } \\
v_{\text {out }}=-v_{g s} & \text { equation 2 } \\
v_{\text {out }}=-v_{N}+\left(g_{m} v_{g s}-i\right) r_{d} & \text { equation 3 }
\end{array}
$$

Substitute equations 1 and 2 into equation 3 :

$$
\begin{aligned}
& v_{\text {out }}=-v_{N}+\left(-g_{m} v_{\text {out }}-\frac{v_{\text {out }}}{R_{2}}\right) r_{d} \\
& \therefore v_{\text {out }}\left(1+g_{m} r_{d}+\frac{r_{d}}{R_{2}}\right)=-v_{N} \\
& \therefore \frac{v_{\text {out }}}{v_{N}}=-\frac{1}{\left(1+g_{m} r_{d}+\frac{r_{d}}{R_{2}}\right)} \\
& \therefore \frac{v_{\text {out }}}{v_{N}}=-\frac{1}{\left(1+10 \times 20+\frac{20}{5}\right)}
\end{aligned}
$$

$=\mathbf{- 0 . 0 0 5}$

Examiner's comment: This question was answered reasonably well. Common mistakes in parts $(a-c)$ were:

- Failing to ground the FET drain in the small signal model, leaving it at 10 V .
- Calculating the output impedance as r_{d} in parallel with R_{2}. This is incorrect, and the correct impedance is found by applying a test current and test voltage ($\mathrm{i}_{\mathrm{x}}, \mathrm{v}_{\mathrm{x}}$).
- Incorrectly drawing $\mathrm{v}_{\mathrm{in}}=\mathrm{vgs}_{\mathrm{gs}}$ in the small signal model.
- Incorrectly assuming $\mathrm{v}_{\mathrm{in}}=\mathrm{v}_{\mathrm{gs}}$ in the calculation of gain.

The best students noted that, as a source follower, you would expect unity gain, which agreed with their calculated gain. Some of these students also noted the low output impedance and high input impedance, which are desirable in a buffer.

Common mistakes in part (d) were:

- Drawing v_{N} across r_{d} only.
- Combining r_{d} in parallel with R_{2}, which is not correct as they do not share the same two nodes.
No students noted how little the noise is amplified (gain $=0.005$), which is a pity! In part (e), the vast majority of students correctly answered that $\mathrm{C}_{\text {out }}$ should be placed in series with R_{L} to create a high pass filter. Some students didn't explain why. In the calculation of $\mathrm{C}_{\text {out }}$, some students used the wrong values of resistance. E.g. they added R_{L} and $R_{\text {out }}$ in parallel rather than in series, or they added R_{L} and r_{d}.
Strangely, some students did not answer part 4(e) but could capably answer question 5 (c-ii), which is a closely related question.
(e) Cout should be placed in series with the load resistor, as the impedance of $C_{\text {out }}$ is $\frac{1}{j \omega C_{\text {out }}}$ which increases as w decreases

$$
\begin{aligned}
\omega_{3 d B} & =\frac{1}{C\left(R_{1}+R_{0,1 t}\right)} \\
\therefore \quad C & =\frac{1}{\omega_{3 d B}\left(R_{L}+R_{0 . t}\right)} \\
& =\frac{1}{2 \pi \times 200 \times(100+97)} \\
& =4.04 \times 10^{-6} \mathrm{~F} \\
& =4.04 \mu \mathrm{~F}
\end{aligned}
$$

Question 5
(a)

$$
\left.\begin{array}{l}
v_{-}=0 \\
v_{+}=0
\end{array}\right\} \text { ground }
$$

Sum currents into node at negative terminal:

$$
\begin{aligned}
I & =-C \frac{d V_{\text {out }}}{d t} \\
I & =\frac{V_{\text {in }}}{R_{1}} \\
\therefore \frac{V_{\text {in }}}{R_{1}} & =-C \frac{d v_{\text {out }}}{d t} \\
\therefore V_{\text {out }} & =-\frac{1}{R_{1} C} \int_{0}^{t} V_{\text {in }} d t \\
\beta & =-\frac{1}{R_{1} C}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
v_{\text {in }} & =0.1 \sin (2 \pi \times 1000 t) \\
v_{\text {out }} & =+\beta \int_{0}^{t} v_{\text {in }} d t \\
& =-6.3 \times 10^{3} \int_{0}^{t} 0.1 \sin (2 \pi \times 1000 t) d t \\
& =-\frac{6.3 \times 10^{3}}{2 \pi \times 1006} 0.1[\cos (2 \pi \times 1000 t)]_{0}^{t} \\
& =-0.111-\cos (2 \pi \times 1000 t)) \quad 0.1 \underbrace{}_{\text {out }}(v) \\
& =0.1(\cos (2 \pi \times 1000 t)-1)
\end{aligned}
$$

$$
\begin{aligned}
v_{\text {out }} & =-\beta \int_{0}^{t} v_{\text {in }} d t \\
& =-6.3 \times 10^{3} \int_{0}^{t} 0.1 \sin (2 \pi \times 10 t) d t \\
& =-\frac{6.3 \times 10^{32}}{2 \pi \times 10} 0.1[\cos (2 \pi \times 10 t)]_{0}^{t} \\
& =-10(1-\cos (2 \pi \times 10 t))
\end{aligned}
$$

But op -amp is only drawing power from $\pm 5 \mathrm{~V}$ rails. \rightarrow Vout will be dipped.
(c) (i)

In reality, clipping will be at slightly less than $\pm 5 \mathrm{~V}$, but students still will obtain full marks if they show clipping at $\pm 5 \mathrm{v}$.

$$
\left\{\begin{aligned}
z & =R_{2} \| C \\
& =\frac{R_{2}}{1+j \omega C R_{2}}
\end{aligned}\right.
$$

Summing currents into node at negative terminal:

$$
\begin{aligned}
\frac{V_{\text {in }}-0}{R_{1}}=\frac{0-V_{\text {out }}}{Z} \Rightarrow \frac{V_{\text {out }}}{V_{\text {in }}} & =-\frac{Z}{R_{1}} \\
& =-\frac{R_{2}}{R_{1}\left(1+J \omega C R_{2}\right)}
\end{aligned}
$$

(ii) $\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{-R_{2}}{R_{1}\left(1+j \omega R_{2} C\right)}$
$3 d B$ cut off when real $=$ imaginary in denominator:

$$
\begin{aligned}
1 & =W C R_{2} \\
\therefore R_{2} & =\frac{1}{\omega C} \\
& =\frac{1}{2 \times \pi \times 10 \times 10^{3} \times 3.18 \times 10^{-9}} \\
& =5000 \Omega \\
& =5 \mathrm{k} \Omega
\end{aligned}
$$

O (a) K-map

Sum of products

$$
\begin{aligned}
& Z=M N+O P+P N+M P+N O+M O \\
& \bar{Z}=\overline{M N+O P+P N+M P+N O+M O} \\
& \bar{Z}=\overline{M N} \cdot \overline{O P} \cdot \overline{P N} \cdot \overline{M P} \cdot \overline{N O} \cdot \overline{M O} \\
& Z=\overline{M N} \cdot \overline{O P} \cdot \overline{P N} \cdot \overline{M P} \cdot \overline{N O} \cdot \overline{M O}
\end{aligned}
$$

Total number of gates required: 6 input NAND \& 16 input NA

Total number of gater required: 43 input NOR \& 14 input NOR.

$$
7(a) L S B=M 1 \cdot M S B=P I
$$

Input impedance at $N 1$ is $4 R=4 k R$
leapt impedance at $P 1$ is $R=1 \mathrm{kR}$.
When all ingots me connected to SV (HICH). The total current is

$$
\begin{aligned}
& I=\frac{5}{8 R}+\frac{5}{4 R}+\frac{5}{2 R}+\frac{5}{R} \\
& V_{\text {out }}=-\frac{R}{2} \cdot I=-\frac{R}{2} \times 5\left(\frac{1}{8}+\frac{1}{4}+\frac{1}{2}+1\right)
\end{aligned}
$$

$$
=-\frac{5}{2} \times \frac{15}{8}=-\frac{75}{16}=-4.6875 \mathrm{v}
$$

(b) Jrawbacks of this design:

1) Resistance values are difficult to implement due to physical dimensions for DAGs with higher bits. The range of resistor values is wide.
2) Accuracy of the resistors is difficult to achieve, esp. for DACE with higher bits
III) Input impedance of each bit is different.

An $R-2 R$ ladder $\triangle A C$ can be wad to avoid the aborementioned pron In this design the values of resistors regained are $R \& 2 R$ only.
$8(a)$
A static hazard in a combinational digital circuit is when a signal undergoes a momentary transition when it is supposed to remain unchanged. A static hazard can. of 0 an 1 .

Static 1 hazard 1 The signal is expected to stay at 1.

$$
Z=A \bar{C}+\bar{A} D
$$

To remove static 1 hazard, an additional term in meded to cover the adjacent but non-ovailapping groups. This is shown in the doted sone in the k-map.

Therefore the function required to avoid static 1 hazard is:

$$
Z=A \bar{C}+\bar{A} D+\bar{C} D
$$

$C D$	00	01	11	10	
00	0	0	1	1	
01	1	1	1	1	
11	1	1	0	0	
10	0	0	0	0	

$$
\bar{z}=A C+\bar{A} \bar{D}
$$

To remove static 0 hazard, an additional term in meded to cover the adjacent but non-ovalapping groups. Thin is shown in the doted group in the k-map.

Therefore the function required to avoid static O hazard in:

$$
Z=A C+\bar{A} \bar{D}+C \bar{D} .
$$

9 (a) louth table for 4 bit synchronous up counter:

Present														
0	0	0	0	0	0	0	1	0	x	0	x	0	x	1

(b)
J_{3}
$0,8$.

$\theta_{3} \theta_{2}$	00	01	11	10
00	0	0	0	0
0	0	0	1	0
11	x	x	x	x
10	x	x	x	x

k_{3}
$0,8$.
$\theta_{3} \theta_{2}$
00
$00 \quad 0111$
10

01

x	x	x	x
x	x	x	x

11	x	x	x	x
0	0	1	0	
0	0	0	0	

$0,8$.

$$
\begin{aligned}
& J_{3}=Q_{0} Q_{1} Q_{2} \\
& k_{3}=Q_{0} Q_{1} Q_{2} \\
& J_{2}=Q_{1} Q_{0} \\
& k_{2}=Q_{1} Q_{0}
\end{aligned}
$$

$$
J_{1}=Q_{0}
$$

$$
K_{1}=Q_{0}
$$

$$
J_{0}=1
$$

$$
k_{0}=1
$$

(c) Without carry in \& carry out

With caryim \& Carry out:
Inspecting $J_{0}, k_{0}, J_{1}, k_{1}, J_{2}, k_{2} \& J_{3}, k_{3}$. previous stages (carry in, should be incorporated with 'AND' gates.

(d)

11ヒリ

The pritar Nametis fuld of Throuen A losp is $G^{2 v+2} B$

$$
\phi=\iint_{S} B \cdot d S
$$

UHERU B is The Nacoutic Fita Densing
(B) B is Defaines i rerans of The fercle Batkean wire CArryjín currents I_{1}, I_{2} a distance a Ω Apart

 is contritu Alnost erainury po ther nacuanc narraite. Sivcs nate cross sccrioss of hato nagurice natraito ano
 Also Tre SAnf
\bigoplus

Frion cossteleriono of natartic Fuux

AD

$$
\begin{aligned}
& B_{y}=B_{c} \\
& B_{c}=\mu_{2} \mu_{0} H_{c} \\
& B_{y}=\mu_{0} H_{g}
\end{aligned}
$$

Arol as frineiau [itig

Herce

$$
\begin{aligned}
& I=\frac{1}{N}\left(\frac{B_{g}}{\mu_{0}} \lg +\frac{B_{c}}{\mu_{r} \mu_{0}} l_{c}\right) \\
& =\frac{1}{\mu_{0} N}\left(l_{g}+\frac{b_{c}}{\mu_{r}}\right) B_{g} \\
& =\frac{1}{4 \pi 10^{-7} 200}\left(2 \times 10^{-3}+\frac{40 \times 10^{-3}}{250}\right) 0.2=1.72 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& \text { TIGN NIVEHB > WNE } \\
& \oint 世 \cdot d \underline{d}=N I \\
& \mathrm{Hg} \lg +\mathrm{H}_{\mathrm{C}} l_{c}=\mathrm{NI}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{S} \bar{D} \cdot d \bar{s}=Q \\
& Q=\epsilon_{0} \bar{E}_{n} \cdot \bar{A}_{2} \\
& \varepsilon_{2}= \frac{\varphi}{\epsilon_{0}\left\langle\pi r^{2}\right.} \\
& V=\int_{d / 2}^{\infty} \frac{\varphi}{4 \pi \varepsilon_{0}} \cdot \frac{d r}{n^{2}}=\frac{\varphi}{4 \pi \epsilon_{0} \frac{d}{2}} \\
& C=\frac{\varphi}{V} \Rightarrow C=4 \pi \epsilon_{0} \frac{d}{2}=2 \pi \epsilon_{0} d
\end{aligned}
$$

GAusim sirfatco. Anea $A_{2}=402 ?$
(\forall

Null دymatrer D is Aculays i Rasim difaction

$$
P=\operatorname{ChArge} \operatorname{son}_{5} \operatorname{siss}
$$

$$
\begin{aligned}
& \text { Candas exccosorosefe } \\
& \text { Fuy of } D=2 \pi r l \Delta \\
& \Rightarrow \quad 2 \pi r e D=\rho e \\
& \Rightarrow D=\frac{\rho}{2 \pi n} \quad E=\frac{\rho}{2 \pi \Omega \varepsilon_{0}}
\end{aligned}
$$

(c) it SivNera chargos ane inino Dicob ition

For $+\rho C$ Chrat Dersity of 4 IRE 1 , Fint
 Thet Steand wire)

$$
V=\int_{R}^{d-R} \frac{\rho}{2 \pi s_{0}} \frac{d n}{\alpha}=\frac{\rho}{2 \pi \varepsilon_{0}} \operatorname{l}\left(\frac{d-R}{R}\right)
$$

$-\rho$ is os $x \operatorname{ing} 2$ and resurs in similar partik loutaw
toues $V=2 \frac{\rho}{2 \pi \varepsilon_{0}} \ln \frac{d-R}{R}$
cachetarea por unit coucher

$$
C=\frac{\rho}{\|}=\frac{\pi \varepsilon_{0}}{\ln \frac{d-R}{R}}
$$

(d)

$$
\begin{aligned}
& C_{P}=\frac{\pi \varepsilon_{0}}{\ln \left(\frac{2-10^{-2}}{10^{-2}}\right)}=5.25 \text { pF } \\
& \text { TAS } E \text {-RiRID is AN TAR SARFAUS of }
\end{aligned}
$$

mas e-riris is an the sarfacls of gidar wires

$$
\begin{aligned}
& E_{\text {MA }}=\frac{\rho}{2 \pi \xi_{0}}\left[\frac{1}{R}+\frac{1}{d-R}\right] y_{y_{\text {WHELUR }}} \\
& d \gg R \\
& \sigma_{n a r}=\frac{1}{2 \pi \varepsilon_{0}} \cdot \frac{1}{R} \cdot \frac{\pi \delta V}{\ln \frac{d-R}{\Omega}} \\
& \Rightarrow V=2 R \ln \left(\frac{d-R}{n}\right) E=2 \times 1010^{-3} \ln \left(\frac{2-10^{-2}}{002}\right) \cdot 0^{106} 106
\end{aligned}
$$

$$
H=\frac{I}{2 \pi n}
$$

Distaicur trion par cimar
Thar naesuric rais can be farcio as guspant abra nate coir
$B=10 H$

$$
\begin{aligned}
& Q_{0}=B \Varangle R_{R A A}=\frac{\mu_{0} I_{+}}{2 \pi \Omega} A= \\
& =\frac{4 \pi^{2} 10^{7} \cdot 2}{2 \pi 0.15}+10^{-4}=2.6610^{-10} \mathrm{~KB}_{\beta} \\
& V=N \underbrace{d\left[\phi_{0} \sin (2 \pi f t)\right]}_{\text {olt }} \\
& V=A \phi_{0} 2 \pi f \cos (2 \pi f t)
\end{aligned}
$$

Pran volutar Vp untion cos (iñftr)-1

$$
H=\frac{V_{p}}{W_{2}-2, f}=\frac{210^{-6}}{2.6610^{-10} 2 \pi 50}=2_{4}
$$

