IA Tripos Paper 4 - Mathematical Methods 2016 - CRIBS

Section A:

(1) (a) Use l'Hopital's rule: twice on $f(x)=(x \cos x-\sin x) / x^{3}$

First $=(\cos x-\sin x-\cos x) / 3 \times 2=-\sin x / 3 \times 2$
Second $=[-\cos x / 3=-1 / 3$
(b) Use l'Hopital's rule once on $g(x)=\sin (\pi x) /\left(x^{2}-16\right)$

$$
=\pi \cos (\pi x) / 2 x=\pi \cos (-4 \pi) /-8=-\pi / 8
$$

2 :

(b) $\quad \operatorname{Im}\left(z^{2}\right)=2 x y$

(3) (a) In any pairs, the vectors a, b, c, satisfy $u, v=0$ so they are orthogonal.

Their magnitudes are $3 \sqrt{2}, 3,3 \sqrt{2}$ respectively so the volume is 56 .
(b) by inspection the order they are in forms a right handed set as does any cyclic permutation.
(4) (a) By inspection \mathbf{U} is a rotation of θ about the origin. For $\theta=\pi / 4$ we get a 45° rotation.

$$
[1,1] \rightarrow[\sqrt{ } 2,0],[1,2] \rightarrow[3 / \sqrt{ } 2,1 / \sqrt{ } 2],[2,2] \rightarrow[2 \sqrt{ } 2,0],[2,1] \rightarrow[3 / \sqrt{ } 2,-1 / \sqrt{ } 2]
$$

Plot points and observe they form a square of unit side.
(b) $\mathbf{U}^{4}=4$ rotations of $-45^{\circ}=$ one rotation of -1 , so $\mathbf{U}^{4}=-I$, can do it by numbers and multiply out the matrices. By inspection, rotation of $-\theta$ gives a transpose of \mathbf{U} so $\mathbf{U}^{-1}=\mathbf{U}^{\top}$
(c) $||\mathbf{A}-\lambda|| \mid=0$ implies $\lambda^{3}-3 \lambda a^{2}-2 a^{3}=0$ or $\lambda=-a,-a, 2 a$.
largest eigenvalue: $\lambda=2$ a Eigenvector: $(1 / \sqrt{ } 3,1 / \sqrt{ } 3,1 / \sqrt{ } 3)$
Other two eigenvectors in the plane perpendicular to $\{1,1,1\}$.
(5) (a) $d N / d t=-\lambda N$ integrates up to $N(t)=N_{0} \exp (-\lambda t)$

After time $T_{1 / 2}$ we have half the number of atoms left so $N\left(T_{1 / 2}\right) / N_{0}=\exp \left(-\lambda T_{1 / 2}\right)=0.5$ and
So : $T_{1 / 2}=\ln (2) / \lambda$.
(b) If the N_{1} species is stable, i.e. has a very long lifetime, then the N_{1} 's being produced are all those that decayed, $N_{1}(t)+N(t)=N_{0}$, so $N_{1}(t)=N_{0}(1-\exp (-\lambda t))$. This satisfies the boundary conditions that there are no N_{1} species at $t=0$ and they are all N_{1} species at very large time.
(c) If the N_{1} species are unstable, then the rate of growth of N_{1} is determined by the rate of formation of N_{1} from N_{0} minus the loss of N_{1} to the daughter product N_{2}

So: $d N_{1}(t) / d t=\lambda N_{0} \exp (-\lambda t)-\lambda^{*} N_{1}(t)=$
Integrate $d N_{1}(t) / d t+\lambda^{*} N_{1}(t)=\lambda N_{0} \exp (-\lambda t)$
Particular integral: $N_{1}(t)=A \exp (-\lambda t): \quad-\lambda A+\lambda^{*} A=\lambda N_{0}$, and so $A=-\lambda N_{0} /\left(\lambda-\lambda^{*}\right)$
No: $N 1(t)=A \exp (-\lambda t)+B \exp \left(-\lambda^{*} t\right)$, and given that $N 1(t=0)=0, B=-A$
$N_{1}(t)=\left[N_{0} /\left(\lambda^{*}-\lambda\right)\right]\left[\exp (-\lambda t)-\exp \left(-\lambda^{*} t\right)\right]$.
(d) $\mathrm{dN}_{1}(\mathrm{t}) / \mathrm{dt}=0$ when $\lambda \exp (-\lambda \mathrm{t})=\lambda^{*} \exp (-\lambda * \mathrm{t})$ or $\mathrm{t}^{*}=\ln \left(\lambda / \lambda^{*}\right) /\left(\lambda-\lambda^{*}\right)$

Note that both numerator and denominator are positive if $\lambda>\lambda^{*}$, and both are negative if $\lambda<\lambda^{*}$, so t^{*} is always positive.

Section- B
Q6 (Short)

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}-4 x=\sin h t \\
& x(0)=0 \\
& \left.\frac{d x}{d t}\right|_{x=0}=0 \text {. } \\
& s^{2} x-4 x=\frac{1}{s^{2}-1} \\
& x(s)=\frac{1}{\left(s^{2}-1\right)\left(s^{2}-4\right)}=\frac{A s+B}{\left(s^{2}-1\right)}+\frac{C s+D}{\left(s^{2}-4\right)} \\
& \Rightarrow A s^{3}+B s^{2}-4 A S-4 B+C s^{3}+D s^{2}-C S-D=1 \\
& \Rightarrow A+C=0 \quad-4 A-C=0 . \quad A=C=0 \\
& B+D=0 \quad-4 B-D=1 \\
& \Rightarrow \quad B=-\frac{1}{3} \text { \& } D=1 / 3 \\
& \therefore x(s)=\frac{-1 / 3}{\left(s^{2}-1\right)}+\frac{1 / 3}{\left(s^{2}-4\right)} \\
& \Rightarrow x(t)=\frac{1}{6} \sinh 2 t-\frac{1}{3} \sinh t \text {. }
\end{aligned}
$$

Q7 (long)

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y=f(t) ; \quad y(0)=\dot{y}(0)=0 .
$$

(a) Step response: $f(t)=1 \quad t \geqslant 0$.
C.F: $\quad y=e^{\lambda t}, \quad f(t)=0$.

$$
\begin{aligned}
x^{2}+2 x+5=0 \Rightarrow x & =\frac{-2 \pm \sqrt{4-20}}{2} \\
& =-1 \pm 2 i \\
\therefore y(t) & =e^{-t}[A \cos 2 t+B \sin 2 t]
\end{aligned}
$$

PI: $y=\alpha \Rightarrow 5 \alpha=1 \Rightarrow \alpha=1 / 5$
\therefore Step response is

$$
\begin{aligned}
& y(t)=\frac{1}{5}+e^{-t}[A \cos 2 t+B \sin 2 t] \\
& \dot{y}(t)=e^{-t}[(B-R A) \cos 2 t+(B-2 A) \sin 2 t] \\
& y(0)=0 \Rightarrow \frac{1}{5}+A=0 \Rightarrow A=-1 / 5 \\
& \dot{y}(0)=0 \Rightarrow 2 B-A=0 \Rightarrow B=-1 / 10
\end{aligned}
$$

\therefore Step response is

$$
\begin{aligned}
& \text { response is } \\
& y(t)=\frac{1}{5}-e^{-t}\left[\frac{\cos 2 t}{5}+\frac{\sin 2 t}{10}\right]
\end{aligned}
$$

Impulse response is the derivative of the (5) step response.

$$
g(t)=\dot{y}(t)=\frac{\sin 2 t}{2} e^{-t}
$$

(b) Now for $f(t)= \begin{cases}0 & t<0 \\ e^{-\alpha t} & t \geqslant 0 .\end{cases}$

$$
\begin{aligned}
& y(t)=\int_{0}^{t} g(t-\tau) f(\tau) d \tau \\
& =\frac{1}{2} \int_{0}^{t} e^{-(t-\tau)} \sin 2(t-\tau) e^{-\alpha \tau} d \tau \\
& =\frac{e^{-t}}{2} \int_{0}^{t} e^{(1-\alpha) \tau} \sin 2(t-\tau) d \tau
\end{aligned}
$$

integrate bes parts:

$$
\begin{aligned}
& =\frac{e^{-t}}{2} \int_{0}^{t} \sin 2(t-\tau) d\left[\frac{e^{(1-\alpha) \tau}}{(1-\alpha)}\right] \\
& =\frac{e^{-t}}{2}\left\{\left.\frac{e^{(1-\alpha) \tau}}{(1-\alpha)} \sin 2(t-\tau)\right|_{0} ^{t}+\frac{2}{(1-\alpha)} \int_{0}^{t} e^{(1-\alpha) \tau} \cos 2(t-\tau) d \tau\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{e^{-t}}{2}\left\{\frac{-\sin 2 t}{(1-\alpha)}+\frac{2}{(1-\alpha)} \int_{0}^{t} \cos 2(t-\tau) e^{(1-\alpha) \tau} d \tau\right\} \\
& =\frac{e^{-t}}{2}\left\{\frac{-\sin 2 t}{(1-\alpha)}+\frac{2}{(1-\alpha)} \int_{0}^{t} \cos 2(t-\tau) d\left[\frac{e^{(1-\alpha)} \tau}{(1-\alpha)}\right]\right\} \\
& =\frac{-e^{-t} \sin 2 t}{2(1-\alpha)}+\frac{e^{-t}}{2}\left\{\frac { 2 } { (1 - \alpha) ^ { 2 } } \left[\left.\begin{array}{c}
(1-\alpha) \tau \\
\cos 2(t-\tau)
\end{array}\right|_{0} ^{t}\right.\right. \\
& \left.\left.-2 \int_{0}^{t} e^{(1-\alpha)^{\tau}} \sin 2(t-\tau) d \tau\right]\right\} \\
& =-\frac{e^{-t} \sin 2 t}{2(1-\alpha)}+\frac{e^{-t}}{(1-\alpha)^{2}}\left[e^{(1-\alpha) t}-\cos 2 t\right] \\
& -\frac{4}{(1-\alpha)^{2}} \frac{\frac{e^{-t}}{2} \int_{0}^{t} e^{(1-\alpha)} \sin 2(t-\tau) d \tau}{y(t)} \\
& \Rightarrow\left(1+\frac{4}{(1-\alpha)^{2}}\right) y(t)=\frac{-e^{-t} \sin 2 t}{2(1-\alpha)}+\frac{e^{-\alpha t}-e^{-t} \cos 2 t}{(1-\alpha)^{2}} \\
& \therefore y(t)=\left[1+\frac{4}{(1-\alpha)^{2}}\right]^{-1}\left[\frac{e^{-\alpha t}-e^{-t} \cos 2 t}{(1-\alpha)^{2}}-\frac{e^{-t} \sin 2 t}{2(1-\alpha)}\right] \\
& \text { or } \\
& y(t)=\left[1+\frac{(1-\alpha)^{2}}{4}\right]^{-1}\left[\frac{e^{-\alpha t}-e^{-t} \cos 2 t}{4}-\frac{(1-\alpha) e^{-t} \sin 2 t}{8}\right]
\end{aligned}
$$

If the integration by parts is done using

$$
\sin 2(t-\pi)
$$

When $\alpha \rightarrow 0$
both oftre abrue Solndions give

$$
y(t)=\frac{1}{5}-e^{-t}\left[\frac{\cos 2 t}{5}+\frac{\sin 2 t}{10}\right]
$$

Q8 (Short)
(a)

$$
\begin{aligned}
p_{0} & =1-\left(p_{1}+p_{2}+p_{3}+\cdots\right) \\
& =1-\left(\alpha p^{1}+\alpha p^{2}+\alpha p^{3}+\cdots\right)
\end{aligned}
$$

$$
p_{0}=1-\frac{\alpha p}{1-p}
$$

(Ceomutric Series - fram data boote) as repsinect.
(b)

$$
\begin{aligned}
(1-x)^{-(n+1)}=1-(n+1)(-x) & +\frac{-(n+1)(-n-2)}{21}(-x)^{2} \\
& +\cdots
\end{aligned}
$$

(Binonnial expansion frem the databate)

$$
\begin{aligned}
& =1+(n+1) x+\frac{(n+1)(n+2)}{21} x^{2}+\cdots \\
\frac{1}{(1-x)^{n+1}} & =\binom{n}{n}+\binom{n+1}{n} x+\binom{n+2}{n} x^{2}+\cdots
\end{aligned}
$$

as remiked.

Q9 (Short)

Stationomy points are

$$
\frac{\partial^{2} f}{\partial x \partial y}=-12 x
$$

$$
\begin{aligned}
& \text { Stationors points are } \\
& (0,3)(0,-3),\left(\frac{12}{\sqrt{41}}, \frac{15}{\sqrt{41}}\right),\left(-\frac{12}{\sqrt{41}}, \frac{-15}{\sqrt{41}}\right) \\
& \partial^{2}
\end{aligned}
$$

$$
\begin{array}{cc}
\partial^{2} f / \partial x^{2} \\
(0,3) & -36 \\
(0,-3) & 36
\end{array}
$$

$$
\left(\frac{12}{\sqrt{4}}, \frac{15}{\sqrt{4} 1}\right) \quad \frac{180}{\sqrt{41}}
$$

$$
-\frac{180}{\sqrt{41}} \quad-\frac{144}{\sqrt{41}}
$$

-ve Sadlle

$$
\left(-\frac{12}{\sqrt{4}}-\frac{15}{\sqrt{41}}\right) \quad-\frac{180}{\sqrt{41}} \quad \frac{180}{\sqrt{41}} \quad \frac{144}{\sqrt{41}} \quad-v e .
$$

$$
\begin{align*}
& f(x, y)=5 x^{3}-2 y^{3}-6 x^{2} y+54 y \\
& \frac{\partial f}{\partial x}=15 x^{2}-12 x y=3 x(5 x-4 y)=0 \\
& \Rightarrow \begin{aligned}
x & =0 \\
x & =\frac{4}{5} y
\end{aligned} \\
& \frac{\partial f}{\partial y}=-6 y^{2}-6 x^{2}+54=-6\left(x^{2}+y^{2}\right)+54=0 \\
& \Rightarrow x^{2}+y^{2}=\frac{54}{6}=3^{2} \tag{D}\\
& \frac{\partial^{2} f}{\partial y^{2}}=-12 y \quad x=0 \text { in (1) } \Rightarrow y= \pm 3 \\
& \frac{\partial^{2} f}{\partial y^{2}}=-12 y \quad x=0 \text { in (1) } \Rightarrow y= \pm 3 \\
& x=\frac{4}{5} y \text { in }\left(D \Rightarrow y= \pm \frac{15}{\sqrt{41}}\right.
\end{align*}
$$

Q10 (long)
(a)

$$
T=4, \quad\left(-2, t_{0} 2\right)
$$

(b)

$$
\begin{aligned}
f(t) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{2 \pi n t}{T} \\
a_{n} & =\frac{2}{T} \int_{-2}^{2} f(t) \cos \left(\frac{2 \pi n t}{T}\right) d t \\
a_{0} & =\frac{1}{2} \int_{-2}^{2} f(t) d t=\int_{0}^{2} f(t) d t \\
& =\left[4 t-\frac{t^{3}}{3}\right]_{0}^{2}=\frac{16}{3} \\
a_{0} & =\frac{16}{3}
\end{aligned}
$$

$$
a_{n}=\frac{1}{2} \int_{-2}^{2}\left(4-t^{2}\right) \cos \left(\frac{n \pi t}{2}\right) d t
$$

internate by parts:

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{8}{\pi n} \sin \left(\frac{n \pi t}{2}\right)\right]_{-2}^{2}-\frac{1}{2} \int_{-2}^{2} t^{2} \cos \left(\frac{n \pi t}{2}\right) d t \\
& =-\frac{1}{2} \int_{-2}^{2} t^{2} d\left[\frac{\sin (n \pi t / 2)}{n \pi / 2}\right]_{-2}^{2}+\frac{1}{n \pi} \int_{-2}^{2} \sin \left(\frac{n \pi t}{2}\right)(2 t) d t \\
& =-\frac{1}{n \pi}\left[t^{2} \sin \left(\frac{n \pi t}{2}\right)\right]_{-2}^{2} \\
& =\frac{2}{n \pi} \int_{-2}^{2} t\left[\frac{-\cos (n \pi t / 2)}{n \pi / 2}\right]_{-2}^{2}+\frac{4}{n^{2} \pi^{2}} \int_{-2}^{2} \cos \frac{n \pi t}{2} d t \\
& =-\frac{4}{n^{2} \pi^{2}}\left[t \cos \left(\frac{n \pi t}{2}\right)\right]_{0}^{2} \\
& \left.\left.=\frac{4}{n^{2} \pi^{2}}[2 \cos n \pi+2 \cos n \pi]+\frac{4}{n^{2} \pi^{2}} \frac{2 n \pi}{n \pi}\right)\right]_{0}^{2} \\
& =-\frac{16}{n^{2} \pi^{2}}(-1)^{n}=\frac{16}{n^{2} \pi^{2}}(-1)^{n+1} n \neq 0 .
\end{aligned}
$$

$$
\therefore f(t)=\frac{8}{3}+\frac{16}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \cos \left(\frac{n \pi t}{2}\right)
$$

as repsired.
(c)

$$
\begin{aligned}
& f(0)=4=\frac{8}{3}+\frac{16}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \\
& \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12} \\
& 1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots=\frac{\pi^{2}}{12} .
\end{aligned}
$$

as reminest.

2016 Paper 4: Mathematical Methods
 Solutions to Section C

11. Data structures
(a) Any one of the following four lines is acceptable:
```
board[0][0].type = Rook; board[0] [0].colour = White;
board[0] [7].type = Rook; board[0] [7].colour = White;
board[7] [0] .type = Rook; board[7] [0].colour = White;
board[7] [7] .type = Rook; board[7] [7]. colour = White;
```

(b)

```
for (int i=0; i<8; i++)
    for (int j=0; j<8; j++)
    if (board[i][j].type == Pawn) cout << i << ', << j << endl;
```

(c)

```
int n = 0;
for (int i=0; i<8; i++)
    for (int j=0; j<8; j++)
    if ((board[i][j].type != None) and (board[i][j].colour == Black)) n = n+1;
cout << n << endl;
```


12. Algorithmic complexity and numerical accuracy

(a) $f 1$ is clearly $O(n)$. The complexity of $f 2$ depends on the implementation of exp, though we can expect this to be fast on common architectures. In fact, the standard $x 86$ implementation of pow is $O(1)$ and appears to use more or less this method (there are single x86 machine code instructions for exponentiation and scaled logarithms).
(b) The program will display a small, non-zero number. This is because $f 1$ will calculate 7^{2} precisely, whereas f 2 will lose some precision in the floating point representation of $\log (7.0)$. The main program does, in fact, display $7.62939 e-06$.
(c) f 1 will fail when n is negative, f 2 will fail when a is zero or negative. Both will fail when a and/or n are sufficiently large to cause a floating point overflow.

