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Section A:
(1) (a) Use I'Hopital’s rule: twice on f{x) = (xcosx - sinx)/x’

First = (cosx-sinx-cosx)/3x2 = -sinx/3x2

Second = [-cosx/3 =-1/3

{b) Use |'Hopital’s rule once on g(x) = sin{nx)/(x*-16)
= cos{nx) / 2x = ncos{-4x)/ -8 =-n/8
2: {(a) Solutions at nm/3 \
|

Circle radius 2.

(b)  Im(z%) =2xy

_/
~

(3} (3) Inany pairs, the vectors a, b, ¢, satisfy u.v = 0 so they are orthogonal.

Their magnitudes are  3v2, 3, 3V2 respectively so the volume is 56.



(b) by inspection the order they are in forms a right handed set as does any cyclic
permutation.

(4) (a) By inspection U is a rotation of 0 about the origin. For 6 = /4 we get a 45° rotation.
[1,1] = [\2, 0], [1,2] > [3/72, 1A2], [2,2] = [2V2, 0], [2,1] = [3/V2, -112]
Plot points and observe they form a square of unit side.

(b) U* = 4 rotations of -45° =one rotation of -1, so U*=-l, can do it by numbers and multiply
out the matrices. By inspection, rotation of —0 gives a transpose of U so U™* = U"

(c) | |A-Ml] |=0 implies A3 -3Xa? - 2a3=0 or A= -3, -a, 2a.
largest eigenvalue: A = 2a Eigenvector: (1/\/3, 1/3, 1/\/3)

Other two eigenvectors in the plane perpendicular to {1,1,1}.

(5) (a) dN/dt =-AN integrates up to N(t)=Noexp(-At)
After time T1> we have half the number of atoms left so N(T1/2)/No= exp(-A T1/2)= 0.5 and
So: Ty =In(2)/A.

(b) If the N1 species is stable, i.e. has a very long lifetime, then the N;’s being produced are all
those that decayed, Ni(t) + N(t) = Ng, so  Ni(t) = No (1 - exp(-At)). This satisfies the boundary
conditions that there are no N; species at t=0 and they are all N1 species at very large time.

(c) If the N1 species are unstable, then the rate of growth of N; is determined by the rate of
formation of N1 from N minus the loss of N1 to the daughter product N;

So: dNy(t)/dt = ANoexp(-At) - A*Ny(t) =
Integrate dNi(t)/dt + A* Ni(t) = ANoexp(-At)
Particular integral: Ni(t) = A exp(-At): -AA +A*A =2ANo, and so A= - ANo/(A-A*)
No: N1(t) = Aexp(-At) + B exp(-A*t), and given that N1(t=0) = 0, B=-A
N1(t) = [No/(A*-1)][ exp(-At) — exp (-A*t)].
(d) dNi(t)/dt= 0 when A exp(-At) = A*¥exp(-A*t) or t* =In (L/L*)/(A-1*)

Note that both numerator and denominator are positive if A>A*, and both are negative if
A<A*, so t* is always positive.
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Solutions to Section C

Data structures
(a) Any one of the following four lines is acceptable:

board[0] [0] .type = Rook; board[0] [0].colour = White;
board[0] [7] .type = Rook; board{0] [7].colour = White;
board[7] [0] .type = Rook; board([7] [0].colour = White;
board[7] (7] .type = Rook; board[(7] [7].colour = White;

(b)

for (int i=0; i<8; i++)
for (int j=0; j<8; j++)

if (board[i] [j].type == Pawn) cout << i << ? ’ << j << endl;
©
int n = 0;

for (int i=0; i<8; i++)

for (int j=0; j<8; j++)

if ((board[i] [j].type != None) and (board[i] [j].colour == Black)) n = n+i;
cout << n << endl;

Algorithmic complexity and numerical accuracy

(a) £1 is clearly O(n). The complexity of £2 depends on the implementation of exp,
though we can expect this to be fast on common architectures. In fact, the standard x86
implementation of pow is O(1) and appears to use more or less this method (there are single
x86 machine code instructions for exponentiation and scaled logarithms).

(b) The program will display a small, non-zero number. This is because £1 will calculate
7% precisely, whereas £2 will lose some precision in the floating point representation of
log(7.0). The main program does, in fact, display 7 .62939e-06.

(c) £1 will fail when n is negative, £2 will fail when a is zero or negative. Both will fail
when a and/or n are sufficiently large to cause a floating point overflow.

Andrew Gee
June 2016
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