
Engineering Tripos Part IA FIRST YEAR

Paper 4: Mathematical Methods

Solutions to 2019 Sections B and C

9. Differential equations
(a) Characteristic equation: λ2 + (2 + α)λ + 2α = (λ + 2)(λ + α) = 0 with solutions
λ = −2 and λ = −α. General solution when α = 3 therefore x(t) = Ae−2t +Be−3t, for
A,B ∈ R. [10]

(b) Two cases, depending on whether α = 2. First α 6= 2:
Solution from part (a) with additional constraint that x(0) = A + B = 1, therefore
x(t) = Ae−2t + (1− A)e−αt, for A ∈ R.
case α = 2: characteristic equation only has one solution λ = 2. Solution therefore
(At + B)e−2t. The constraint x(0) = 1, yields B = 1, so general solution x(t) =
(At+ 1)e−2t, for A ∈ R. [10]

(c) For the inhomogeneous case we need to find a particular integral. The right hand
side inspires to try x(t) = Ct + D. Plugging into the differential equation we obtain
4C + 4Ct + 4D = 1 + t, with solutions C = 1/4 and D = 0, i.e. the particular
integral x(t) = t/4. The constraint x(0) = 0 gives B = 0, so the general solution is
x(t) = Ate−2t + t/4, for A ∈ R. [10]

Assessors’ remarks: This question was a straightforward differential equation question,
with a second order differential equation with a free parameter, and questions including
homogeneous and inhomogeneous versions, as well as various types of boundary condi-
tions. Students generally did very well. The only persistent issue, was that for part (b),
for a particular setting of the free parameter, the characteristic equations no longer has
two distinct solutions. A large majority of the students failed to deal correctly with this,
even when part (c) explicitly asked for examination of that case (which the majority then
proceeded to do correctly).

10. Difference equations and eigenvectors
(a) Setting

A =

[
α 1

2

1− α 1
2

]
,

recovers the desired equations for the components of z exactly. [6]

(b) Only excitation in the direction of the the eigenvector v1 corresponding to λ1 = 1 will
persist (as |λ2| < 1 excitation in this direction decays) as n→∞. Find eingenvectors by
solving Az = λz:
for λ1 = 1: bottom equation gives

(1− α)x+ 1
2
y = y =⇒ (1− α)x = 1

2
y =⇒ v1 =

[
1

2(1− α)

]
,

for λ2 = α− 1
2
: top equation gives

αx+ 1
2
y = (α− 1

2
)x =⇒ 1

2
y = −1

2
x =⇒ v2 =

[
1
−1

]
.
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Decomposing z0 into directions v1 and v2:

z0 = av1 + bv2 =⇒ a+ b = 1
2a(1− α) = b

=⇒ a =
1

1 + 2(1− α)
=

1

3− 2α
.

As n→∞ only the excitation av1 persists, so zn → av1 = 1
3−2α

[1 2(1− α)]t. [12]

(c) The only way excitation (unit magnitude of z0) can decay to zero in a finite number
of steps is if z0 is parallel to v2 and λ2 = 0, therefore α = 1

2
. [12]

Assessors’ remarks: This question was a little bit unusual, combining a difference equa-
tion with linear algebra. The students generally did not do very well. The overwhelming
majority understood how to rewrite the two coupled equations as a single matrix equa-
tion. Most students seemed to understand how to use the eigenvalues to examine the
iteration scheme, but there was some level of confusion regarding normalisation: most
renormalised eigenvectors (which is unnecessary) and, oddly, many renormalised their
final answer in (b) to have unit length (which is incorrect). The final question was also
not answered that well. Of the candidates who did manage it, about half explicitly exam-
ined the twice-forward iteration, and half concluded (more elegantly) that det(A) must
be zero.

11. Linear systems and convolution
(a) System is second order, as it has two exponential time constants. Impulse response
g(t) is derivative of step response, so g(t) = −Be−t − 2Ce−2t. Second order systems
have continuous impulse responses, so g(0) = 0 =⇒ −B − 2C = 0. Hence g(t) =
2Ce−t − 2Ce−2t = D(e−t − e−2t), where D = 2C. [10]

(b) We have

y(t) =

∫ t

τ=0

g(t− τ)f(τ)dτ = D

∫ t

τ=0

(
e−(t−τ) − e−2(t−τ)) e−τdτ

= De−t
∫ t

τ=0

dτ −De−2t

∫ t

τ=0

eτdτ = D(te−t − e−2t[et − 1]).

Therefore y(t) = D(te−t − e−t + e−2t) for t > 0 and y(t) = 0 otherwise. [10]

(c) Three intervals. First, for t < T , y(t) = 0. Second, for T ≤ t ≤ 2T :

y(t) = D

∫ t

τ=T

(
e−(t−τ) − e−2(t−τ)) e−τdτ = De−t

∫ t

τ=T

dτ −De−2t

∫ t

τ=T

eτdτ

= De−t (t− T )−De−2t
(
et − eT

)
,

Finally, for t > 2T :

y(t) = D

∫ 2T

τ=T

(
e−(t−τ) − e−2(t−τ)) e−τdτ = De−t

∫ 2T

τ=T

dτ −De−2t

∫ t

τ=T

eτdτ

= DTe−t −De−2t
(
e2T − eT

)
.

[10]

Assessors’ remarks: Part (a): This question was in two parts: How do they know the
system is second order and deriving the impulse response. A few candidates made the
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mistake of saying that the system was second order as it had a discontinuous step re-
sponse. The derivation of the impulse response was performed correctly by most can-
didates, although some did not use the correct boundary condition to find D. Part (b):
Most candidates got this part correct. Part (c): A large number of candidates made the
same error – they swapped the arguments of the convolution, not realising that you can-
not do this without adjusting the limits (this works when the limits are [0, t], but here they
were integrating over [T, t] or [T, 2T ]). Candidates who approached the question using
linearity and shifting the response to part (b) almost always forgot to scale the response
correctly. Many candidates lost marks by not stating the complete response or not stating
limits.

12. Laplace transforms
(a) For the Laplace transform of y(t) we have

ȳ(s)(s2 + 2s+ 2) =
6(s+ 1)

(s+ 1)2 + 1
=⇒ ȳ(s) =

6(s+ 1)

((s+ 1)2 + 1)2

[10]

(b) Convolution in the time domain is equivalent to multiplication in the Laplace domain.
From (a),

ȳ(s) =
1

(s+ 1)2 + 1
× 6(s+ 1)

(s+ 1)2 + 1
= ḡ(s)f̄(s)

Hence y(t) = f(t) ∗ g(t), where g(t) = e−t sin(t) for t > 0 and g(t) = 0 otherwise, as
the inverse Laplace transform of ḡ(s). [10]

(c) We take the inverse Laplace transform of the result from (a). Using the fact that
t sin(t) has Laplace transform 2s(s2 + 1)−2 from the Mathematics Data Book, and that
multiplication by e−t in the time domain corresponds to shifting s by 1 in the Laplace
domain, we get y(t) = 3te−t sin(t) for t > 0 and y(t) = 0 otherwise. [10]

Assessors’ remarks: Part (a): Most candidates got this part correct, barring a few alge-
braic mistakes. Part (b): Instead of separating the Laplace transform of y(t) and using
the inverse Laplace transforms in the databook, many candidates noted that g(t) was the
impulse response of the system and therefore found the step response from the differ-
ential equation and differentiated it (resulting in a page or two of algebra). This often
resulted in answers which had incorrect or unknown constants due to incorrectly applied
boundary conditions. Part (c): Three methods were attempted for this part of the ques-
tion: inspection, convolution, and partial fractions. Those candidates who did this part
of the question by inspection mostly got the answer correct. Many candidates noticed
that they could find y(t) by solving the convolution integral from part (b). However, this
involves a couple of pages of algebra that includes some fiddly trigonometric identities
which tripped up many of the candidates. A large number of candidates attempted to
solve this part by splitting ȳ(s) into partial fractions, none of whom succeeded as this
is not a route to a solution for this question. It was clear from comments that many
candidates felt frustrated when partial fractions did not yield a result.
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