Paper 1

SECTION A

Question 1

1 A famous tower is leaning at an angle of $\theta=4$ degrees from vertical. It has a total mass m, and can be modelled as a uniform solid cylinder of radius r and height h. At time $t=0$ the foundations of the tower give way such that it starts to fall, pivoting freely about the centre of the base, which does not move.
(a) Find an expression for the angular velocity of the tower during its fall as a function of the angle of the tower from vertical θ, making a suitable assumption about the effect of the initial lean angle.

$$
v_{c}=w h / 2
$$

$$
I_{G}=m\left(\frac{r^{2}}{4}+\frac{h^{2}}{12}\right)
$$

- datrook.

$$
\begin{aligned}
& 80 \lg \frac{h}{2}(1-\cos \theta)=\frac{1}{2} \mu \omega^{2} h^{2} / 4+\frac{1}{2} \mu\left(\frac{r^{2}}{4}+\frac{h^{2}}{12}\right) \omega^{2} \\
& g h(1-\cos \theta)=\omega^{2} h^{2} / 4+\omega^{2}\left(r^{2} / 4+h^{2} / 12\right) \\
& \omega^{2}=\frac{g h(1-\cos \theta)}{h^{2} / 4+r^{2} / 4+h^{2} / 12} \\
& =\frac{g h(1-\cos \theta)}{r^{2} / 4+h^{2} / 3}
\end{aligned}
$$

so $\omega=\sqrt{\frac{12 g^{h}(1-\cos \theta)}{3 r^{2}+4 h^{2}}}$

$$
\begin{aligned}
& \Delta P E=\triangle K E
\end{aligned}
$$

(b) Find an expression for the angular acceleration of the tower as a function of θ.

$$
\underline{a}=-r \dot{\theta}^{2} \underline{e} r+r \ddot{\theta} e_{\theta}
$$

$$
\begin{aligned}
\sum M_{A} & \Rightarrow m g h / 2 \sin \theta-m h / 2 \ddot{\theta} h / 2-I_{G} \ddot{\theta}=0 \\
\ddot{\theta} & =\frac{m g h / 2 \sin \theta}{m(h /)^{2}+m\left(r^{2} / 4+h^{2} / h\right)} \\
& =\frac{6 n g h \sin \theta}{3, h h^{2}+3 \mu s^{2}+\mu h h^{2}} \\
& =\frac{6 g h \sin \theta}{3 r^{2}+4 h^{2}}
\end{aligned}
$$

Alternative method:

$$
\begin{aligned}
\ddot{\theta} & =\frac{d}{d \theta}\left(\frac{1}{2} \dot{\theta}^{2}\right) \\
& =\frac{d}{d \theta}\left(\frac{6 g h(1-\cos \theta)}{3 r^{2}+4 h^{2}}\right) \\
& =\frac{6 g h \sin \theta}{3 r^{2}+4 h^{2}}
\end{aligned}
$$

Y as above.

Question 1 continued
(c) (i) During the fall, at what distance x, as measured from the top of the tower, does the maximum bending moment occur?

GM@ cut: $M=I_{G}{ }^{\prime} \ddot{\theta}+\mu^{\prime}(h-x / 2) \ddot{\theta} \cdot \frac{x}{2}-M^{\prime} g \frac{x}{2} \sin \theta$

$$
\binom{\mu^{\prime}=\mu x / h}{I_{G}^{\prime}=\mu^{\prime} \frac{x^{2}}{12}+\mu^{\prime} \frac{r^{2}}{4}=\frac{\mu x^{3}}{12 h}+\frac{\mu x r^{2}}{4 h}}
$$

$$
M=\left[\frac{m x^{3}}{12 h}+\frac{m x r^{2}}{4 h}+\frac{m x}{h}\left(h-\frac{x}{2}\right) \frac{x}{2}\right] \ddot{\theta}-\frac{m x}{h} g \frac{x}{2} \sin \theta
$$

$$
=\left[\frac{m x^{3}}{12 h}+\frac{m x r^{2}}{4 h}+\frac{m x^{2}}{2}-\frac{m x^{3}}{4 h}\right] \ddot{\theta}-\frac{m x^{2} g}{2 h} \sin \theta
$$

IB Mechanics 2019 Page 3

$$
\begin{aligned}
& =\left[-\frac{m x^{3}}{6 h}+\frac{m x^{2}}{2}+\frac{m x s^{2}}{4 h}\right]_{\text {not fuck of } x}^{\ddot{\theta}}-\frac{m x^{2} g}{2 h}=\cdot \theta \\
& \frac{d M}{d x}=\left[-\frac{\mu x^{2}}{2 h}+m x+\frac{\mu r^{2}}{4 h}\right] \ddot{g}-\frac{m x g}{h} \operatorname{sig}=0 . \\
& x\left(\frac{-2 h}{\mu \ddot{\theta}}\right) \Rightarrow x^{2}-\frac{2 h}{\mu x} \mu x-\frac{2 k}{\mu} \frac{\mu r^{2}}{4 \mu y}+\frac{2 h}{\mu \ddot{\theta}} \cdot \frac{\alpha x g a \dot{\theta}}{\mu x}=0 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+x\left(\frac{2 g \dot{g} \theta}{\ddot{\theta}}-2 h\right)-r^{2} / 2=0 \\
& \backsim \\
& 4 \\
& \begin{aligned}
\frac{2 g \operatorname{si\theta } \theta}{\left(\frac{6 g h \sin \theta}{3 r^{2}+4 h^{2}}\right)} & =\frac{1}{3}\left(3 r^{2}+4 h^{2}\right) / h \\
& =\frac{r^{2}}{h}+\frac{4 h}{3}
\end{aligned} \\
& x^{2}+x\left(\frac{r^{2}}{h}-\frac{2 h}{3}\right)-\frac{r^{2}}{2}=0 . \\
& x=\left(\frac{2 h}{3}-\frac{r^{2}}{h}\right) \pm \sqrt{\left(\frac{r^{2}}{h}-\frac{2 h}{3}\right)^{2}+4 r^{2} / 2} \\
& 2 \\
& \begin{aligned}
&=\left(h / 3-r^{2} / 2 h\right)+ \sqrt{\left(h / 3-r^{2} / 2 h\right)^{2}+r^{2} / 2} \\
&\binom{\text { soluhin not physical }}{\text { as -ie. }} .
\end{aligned}
\end{aligned}
$$

Note for (c)(i): if you calculate S first and solve $S=0$, then you obtain a slightly different answer. The reason for this is that $\mathrm{S}=\mathrm{dM} / \mathrm{dx}$ is only valid for a slender beam.
(ii) Show that $x=2 h / 3$ for the case $r=0$ (ie. a thin rod).
if $\quad r=0, \quad x=h / 3+\sqrt{(h / 3)^{2}}$

$$
=2 \mathrm{~h} / 3 \mathrm{ff} \text { as required. }
$$

Question 2

2 Figure 1 shows a diagram (not to scale) for a partially complete design of a lifting mechanism that is made from three light rigid bodies AB, CD and BCE . At the instant shown, the coordinates of the points are $A=(0,0) \mathrm{mm}, \mathrm{B}=(0,60) \mathrm{mm}, \mathrm{C}=(20,60) \mathrm{mm}$, $\mathrm{D}=(x, 0) \mathrm{mm}$ and $\mathrm{E}=(110,90) \mathrm{mm}$.
(a) The distance x is to be chosen, which determines the length of the link CD.
(i) Identify the coordinates of the instantaneous centre of the completed mechanism such that point E instantaneously moves vertically.
(ii) What is the corresponding distance x that results in E moving vertically?

IB Mechanics 2019 Page 5
(b) For the case $x=40 \mathrm{~mm}$:
(i) If point E has an absolute speed of $5 \mathrm{~mm} \mathrm{~s}^{-1}$ and AB rotates clockwise, find the angular velocity of each component.

Fig. 1

Question 2 continued
(ii) A frictional torque of 2 N mm opposes the motion at each joint $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D, and a load of 0.1 N pulls vertically downwards at E . Find the required drive torque at A for the same motion as described in part (b)(i).

$$
\left.\begin{array}{l}
\omega_{A}=0.0439 . \\
\omega_{B}=2 \times 0.0439 \\
\omega_{C}=2 \times 0.0439 \\
\omega_{D}=0.0439
\end{array}\right\} \text { opposite dirchios }
$$

reed roticial comport of veloce\} ~ © ~ E : ~

by virtual was:

$$
\begin{aligned}
& T_{\text {inst }} \omega_{A}=\Sigma P_{\text {coss }} \\
& =\underbrace{0.0439 \times 6 \times \underbrace{2}_{\substack{\text { mich } \\
\text { fou }}}}_{\substack{\sum \omega_{i} \text { e each } \\
\text { joint }}}+4.82 \times 0.1 \\
& =1 \cdot 01 \\
& T_{\text {imit }}=\frac{1.01}{0.0439}=23.0 \mathrm{~N}_{\text {mu }}
\end{aligned}
$$

IB Mechanics 2019 Page 7

3 A schematic diagram of a go-kart travelling at velocity $V_{0} \mathbf{j}$ is shown in Fig. 2(a). The centre of mass G is at a height h above the road, and point A is the centre of the front-right wheel. The unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are fixed to the ground, and $\mathbf{e}_{\mathbf{r}}, \mathbf{e}_{\theta}$ are defined relative to the kart, with $\mathbf{e}_{\mathbf{r}}$ parallel to the wheel axes.

Figure 2(b) shows a view from the side of the kart of the front-right wheel with radius r. Point C defines a general position on the tyre at an angle ϕ from the point of contact with the road, and unit vectors $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{2}$ rotate with the wheel such that $\mathbf{e}_{\mathbf{1}}$ is in the direction AC. The angular velocity of the kart about a vertical axis is defined to be $\Omega \mathbf{k}$.
(a) Initially, the kart is travelling along a straight path at a constant velocity $V_{0} \mathbf{j}$ (ie. $\Omega=0$) with wheels of radius r rotating at angular speed ω such that there is no slip.
(i) Write down an expression for the position vector of point C relative to G in terms of the unit vectors and parameters defined in Fig. 2.
(ii) Derive expressions for the velocity and acceleration of point C relative to G in terms of the unit vectors and parameters defined in Fig. 2.

(a) Top view of the go-kart

$$
\text { i) } \begin{aligned}
\Gamma_{C / G} & =\Gamma_{A / G}+\Gamma_{C / A} \\
& =a e_{r}+b e_{\theta}+(r-h) k+r e_{1}
\end{aligned}
$$

$$
\text { ii) } \dot{-}_{c / G}=r \dot{e}_{1}
$$

$$
r \omega e_{2}
$$

$$
\left[\begin{array}{l}
n / b e_{r} \& e_{\theta} \\
n o t \text { rotating }
\end{array}\right]
$$

$$
\ddot{\Gamma}_{C / G}=\Gamma \omega \dot{e}_{2}
$$

$$
=-r \omega^{2} e_{1} / /
$$

(b) Side view of the front right wheel

Fig. 2

Question 3 continued
(b) The kart then goes into a spin about a vertical axis. At the instant shown in Fig. 2(a), the angular velocity of the kart is $\Omega \mathbf{k}$ where Ω is constant, the wheels continue to rotate at constant angular speed ω, and the centre of mass of the kart continues to move at constant velocity $V_{0} \mathbf{j}$. It can be assumed that the driver does not steer the wheels.
(i) Derive expressions for the derivatives $\dot{\mathbf{e}}_{r}, \dot{\mathbf{e}}_{\theta}, \dot{\mathbf{e}}_{1}$ and $\dot{\mathbf{e}}_{2}$.
(ii) When C is instantaneously in contact with the ground, find the velocity and acceleration of point C relative to the ground in terms of the unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ and $\mathbf{e}_{r}, \mathbf{e}_{\theta}$, and the parameters defined in Fig. 2.

(b) Side view of the front right wheel

Fig. 2
i) $\left(\underline{e}_{r}, \underline{e}_{\theta}\right)$ rotating $e(\Omega \underline{l}),\left(e_{1}, e_{2}\right)$ rotating e $\left(\Omega \underline{\underline{k}}-\omega e_{r}\right)$

$$
\begin{aligned}
\dot{e}_{r}=\left(\Omega \underline{k} \times \underline{e}_{r}\right)=\Omega \underline{e}_{\theta} / / \quad \dot{e}_{1} & =\left(\Omega \underline{k}-\omega \underline{e}_{r}\right) \times \underline{e}_{1} \\
\dot{e}_{\theta}=\left(\Omega \underline{k} \times \underline{e}_{\theta}\right)=-\Omega \underline{e}_{r} & =\Omega \operatorname{si\phi } \underline{e}_{r}+\omega \underline{e}_{2} \\
\dot{e}_{2} & =\left(\Omega \underline{k}-\omega \underline{e}_{r}\right) \times \underline{e}_{2} \\
& =\Omega \cos \phi \underline{e}_{r}-\omega \underline{e}_{1}
\end{aligned}
$$

ii) $r_{c}=\underline{r}_{G}+a e_{r}+b e_{\theta}+(r-h) k+r e_{1}$

$$
\begin{aligned}
\dot{r}_{c} & =V_{0} \dot{j}+a \dot{e}_{r}+b \underline{e}_{\theta}+r \dot{e}_{1} \\
& =V_{0} \dot{j}+a \Omega e_{\theta}-b \Omega e_{r}+r\left(\Omega \sin \underline{e}_{r}+\omega e_{2}\right) \\
\left.\dot{r}_{c}\right|_{\phi=0} & =V_{0} \underline{j}+a \Omega e_{\theta}-b \Omega \underline{e}_{r}+r \omega e_{2}
\end{aligned}
$$

$$
=V_{0 \underline{j}}+(a \Omega-r \omega) e_{\theta}-b \Omega \underline{e}_{s} / f \quad \begin{gathered}
\binom{\text { as } \underline{e}_{2}=-e_{\theta}}{\text { instantaneously }}
\end{gathered}=
$$

Question 3 continued

$$
\begin{aligned}
& \dot{\underline{I}}_{c}=v_{0} \underline{j}+a \Omega e_{\theta}-b \Omega e_{r}+r\left(\Omega \sin \phi e_{r}+\omega e_{2}\right) \quad \\
& \dot{\phi}^{\prime} \\
& \ddot{\underline{r}}_{c}=a \Omega \dot{e}_{\theta}-b \Omega \dot{e}_{r}+r \Omega \omega \cos \phi \underline{e}_{r}+r \Omega \operatorname{si\phi } \phi \dot{e}_{r}+r \omega \dot{e}_{2}
\end{aligned}
$$

(A $\phi=0 \rightarrow$

$$
\begin{aligned}
& \ddot{r}_{0}=-a \Omega^{2} e_{r}-b \Omega^{2} e_{\theta}+r \Omega \omega e_{r}+r \omega \Omega e_{r}-r \omega^{2} e_{1}^{\prime \prime}-\underline{k} \text { instatumanoug } \\
& =\left(-a \Omega^{2}+2 r \omega \Omega\right) e_{r}-b \Omega^{2} e_{\theta}+r \nu^{2} k /
\end{aligned}
$$

Nok ther are several ways to attupt this queshai. If you frot eet $\phi=0$, then exdra care must be talen:

$$
\begin{aligned}
\underline{I}_{c} & =a \underline{e}_{r}+b e_{\theta}+(r-h) \underline{\underline{k}}+r \underline{e}_{1} \\
\dot{I}_{c} & =a \Omega \underline{e}_{g}-b \Omega \underline{e}_{r}+r\left(\Omega \underline{\underline{k}}-\omega e_{r}\right)+e_{1} \\
& =a \Omega e_{\theta}-b \Omega e_{r}+r \omega e_{2}
\end{aligned}
$$

must use
this expe the thaise mis torns.

$$
\begin{aligned}
& =_{2} \\
& 11 \\
& -\frac{e}{-0}
\end{aligned}
$$

$$
\begin{aligned}
\rightarrow \ddot{\underline{r}}_{c} & =-a \Omega^{2} e_{r}-b \Omega^{2} e_{\theta}+r\left(-\omega \dot{e}_{r}\right) \times \underline{e}_{1}+r\left(\Omega k-\omega \underline{e}_{r}\right) \times\left(\Omega \underline{k}-\omega e_{r}\right) \times e_{1} \\
& =-a \Omega^{2} e_{r}-b \Omega^{2} e_{\theta}-r \omega \Omega \underline{e}_{\theta} \times e_{1}+r\left(\Omega \underline{\underline{k}}-\omega \underline{e}_{r}\right) \times\left(\nu e_{2}\right) \\
& =-a \Omega^{2} e_{r}-b \Omega^{2} e_{\theta}+r \omega \Omega e_{r}+r \omega \Omega \underline{e}_{r}-r \omega^{2} e_{1} \\
& =\left(-a \Omega^{2}+2 r \omega \Omega\right) e_{r}-b \Omega^{2} \underline{e}_{\theta}+r \omega^{2} \underline{k} / \ln \text { before. }
\end{aligned}
$$

A non-exhaustive list of accepted varabios:
(a) (i)

$$
\begin{aligned}
\underline{r}_{</ G}= & a \underline{\underline{i}}_{\underline{u}}^{\underline{e}_{r}}+\underline{\underline{j}}_{\underline{j}}-r \sin \phi \underline{j}-(h-r+r \cos \phi) \underline{\underline{e}} \\
& =a \underline{e}_{\theta}+b \underline{e}_{\theta}+(r-h) \underline{\underline{k}}+r \underline{e}_{1}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \dot{\dot{I}}_{c / G}=r \omega e_{2}=V_{0} e_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \ddot{\zeta}_{C G}=-r \omega^{2} e_{1}=-V_{0}^{2} / r e_{1} \\
& =r \nu^{2} \sin _{\chi_{j}^{\prime}}+r \Delta^{2} \cos \phi \underline{s}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
\underline{e}_{r} & =\Omega \underline{e}_{\theta}=\Omega \underline{j} \\
\underline{e}_{9} & =-\Omega \underline{e}_{r}=-\Omega \underline{\underline{i}} \\
\underline{\underline{i}}_{1} & =\Omega \sin \phi \underline{e}_{r}+\omega \underline{e}_{2} \\
& =\Omega \sin \phi \underline{i}-\omega \cos \phi \underline{e}_{\ddot{e n}_{j}}+\omega \sin \phi \underline{k} \\
\dot{\underline{e}}_{2} & =\Omega \cos \phi \underline{e}_{r}-\omega \underline{e}_{1} \\
& =\Omega \cos \phi \underline{i}+\omega \sin \phi \underline{e}_{\theta}+\omega \cos \phi \underline{k}
\end{aligned}
$$

(ii)

Q4 olive in martini glass

$$
\begin{align*}
& m \text { (a) } K E=\frac{1}{2} m \dot{z}^{2}+\frac{1}{2} m z^{2} \omega^{2} \sin ^{2} \theta \\
& q=m g \cos \theta \\
& E=\frac{1}{2} m \dot{z}^{2}+\frac{1}{2} m z^{2} \omega^{2} \sin ^{2} \theta-m g z \cos \theta \\
& E d M \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)=\frac{\partial L}{\partial q} \quad q \equiv z \\
& \frac{\partial L}{\partial \dot{z}}=m \dot{z} \quad \frac{\partial L}{\partial z}=m z \omega^{2} \sin ^{2} \theta-m g \cos \theta \\
& \ddot{z}=z \sin ^{2} \theta \omega^{2}-g \cos \theta \tag{5}
\end{align*}
$$

b) equilibrium: $\ddot{z}=0 \Rightarrow z_{0}=\frac{g \cos \theta}{\omega^{2} \sin ^{2} \theta}$
increasing z away from eqm: $\ddot{z}>0$
\Rightarrow unstable equilibrium

$$
\begin{equation*}
g=9.8 \quad u=\sqrt{10} \quad \theta=\pi / 2 \Rightarrow z_{0}=\sqrt{2} \frac{9.8}{10}<l \tag{3}
\end{equation*}
$$

$\log _{52}^{z_{0}} \quad \checkmark$ bead flies off rod
C) $\dot{z} \ddot{z}=\dot{z} z^{2} \omega^{2} \sin ^{2} \theta-\dot{z} g \cos \theta \Rightarrow \dot{z}^{2}-z^{2} \omega^{2} \sin ^{2} \theta+z g \cos \theta=$ cons locus is a pair of hyperbolas

Q5 eggand spoon race

$$
\begin{aligned}
& v=a t \\
& r \quad r \cdot m / T=\frac{1}{2} m(r \dot{\theta} \cos \theta-a t)^{2}+\frac{1}{2} m r^{2} \dot{\theta}^{2} \sin ^{2} \theta \\
& V=r m g(1-\cos \theta) \\
& L=T-V=\frac{1}{2} m(r \dot{\theta} \cos \theta-a t)^{2}+\frac{1}{2} m r^{2} \dot{\theta}^{2} \sin ^{2} \theta+r m g \cos \theta
\end{aligned}
$$

b)

$$
\begin{align*}
& \frac{\partial L}{\partial \theta}=-m g r \sin \theta+m r^{2} \dot{\theta} \cos \theta \sin \theta-m(r \dot{\theta} \cos \theta-a t) r \dot{\theta} \sin \theta \\
& \frac{\partial L}{\partial \dot{\theta}}=m(r \dot{\theta} \cos \theta-a t) r \cos \theta+m r^{2} \dot{\theta} \sin ^{2} \theta \\
& =m \operatorname{art\operatorname {cos}\theta +mr^{2}\dot {\theta }} \\
& \frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}}=m \operatorname{arcos} \theta+m r^{2} \ddot{\theta}+m \operatorname{ar} t \sin \theta \dot{\theta} \\
& \Rightarrow m r \ddot{\theta}+m \operatorname{ar} \cos \theta+m \operatorname{art} \dot{\theta} \sin \theta=-m g r \sin \theta+m r^{2} \dot{\theta}^{2} \sin \theta \cos \theta- \\
& \ddot{\theta}=-\frac{1}{r}(g \sin \theta-a \cos \theta) \\
& \ddot{\theta}=-\frac{\sqrt{g^{2}+a^{2}}}{r} \sin (\theta+\beta), \tan \beta=\frac{a}{g} \tag{7}
\end{align*}
$$

no explicit time dependence! Pendulum
c) stable equilibrium possible: $\beta<\varphi / 2$

$$
\frac{a}{g}<\tan \frac{\varphi}{2} \Rightarrow a<g \tan \varphi / 2
$$

Q6 double pendulum
a)

$$
\begin{aligned}
& T=\frac{1}{2} m\left[l^{2} \dot{\theta}_{1}^{2}+\left(l \dot{\theta}_{1} \cos \theta_{1}+l \dot{\theta}_{2} \cos \theta_{2}\right)^{2}+\right. \\
& \left.\quad+\left(l \theta_{1} \sin \theta_{1}+l \dot{\theta}_{2} \sin \theta_{2}\right)^{2}\right] \\
& \begin{aligned}
V=-m g l & \cos \theta_{1}-m g l\left(\cos \theta_{1}+\cos \theta_{2}\right) \\
L=\frac{1}{2} m l^{2}\left(2 \dot{\theta}_{1}^{2}+\dot{\theta}_{2}^{2}\right. & +2 \dot{\theta}_{1} \dot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right) \\
& +m g l\left(2 \cos \theta_{1}+\cos \theta_{2}\right)
\end{aligned}
\end{aligned}
$$

b)
ague positions

Q. stability of modes not of eam. states (Two lowest energy equilibia only also accepted)
c) second lowest PE, $\theta_{1}=0, \theta_{2}=\pi$, expand L

$$
\left.\begin{array}{rl}
L= & \frac{1}{2} m l^{2}\left[2 \delta \dot{\theta}_{1}^{2}\right.
\end{array}+\delta \dot{\theta}_{2}^{2}+2 \delta \dot{\theta}_{1} \delta \dot{\theta}_{2} \cos \left(\delta \theta_{1}-\pi-\delta \theta_{2}\right)\right] \quad \begin{aligned}
&+m g l\left[2\left(1-\frac{\delta \theta_{1}^{2}}{2}\right)+(-1)+\frac{\delta \theta_{2}^{2}}{2}\right] \\
&=\frac{1}{2} m l^{2}\left[\delta \dot{\theta}_{1} \delta \dot{\theta}_{2}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
\delta \dot{\theta}_{1} \\
\delta \dot{\theta}_{2}
\end{array}\right]+\frac{1}{2} m g l\left[\begin{array}{l}
\left.\delta \theta_{1} \delta \theta_{2}\right]
\end{array}\right]\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\delta \theta_{1} \\
\delta \theta_{2}
\end{array}\right] \\
&+ \text { const }
\end{aligned}
$$

d) normal modes:

$$
\begin{aligned}
& K=-m g l\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right] \quad M=m l^{2}\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right] \\
& \operatorname{det}\left(K-\omega^{2} M\right)=0 \\
& \left|\begin{array}{rr}
2 \omega^{2}-2 g / l & -\omega^{2} \\
-\omega^{2} & \omega^{2}+g / l
\end{array}\right|=0 \\
& 2\left(\omega^{2}-g / l\right)\left(\omega^{2}+g / l\right)-\omega^{4}=0 \\
& \omega^{4}-2 g^{2} / l^{2}=0 \\
& \omega^{4}=2 g^{2} / e^{2} \Rightarrow \omega^{2}= \pm \sqrt{2} g / l
\end{aligned}
$$

