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ENGINEERING TRIPOS PART IB

Wednesday 5 June 2019 2 to 4.10

Paper 5

ELECTRICAL ENGINEERING

Answer not more than four questions.

Answer not more than two questions from any one section and not more than one
question from each of the other two sections.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Answers to questions in each section should be tied together and handed in
separately.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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Question 1 

a) 

Thévenin’s theorem:  Any linear two-terminal network may be replaced by a voltage source 

VTH in series with a resistance RTH. 

Here, VTH is the open circuit voltage of the original circuit (Vout). RTH = resistance measured 

between output terminals of original circuit. 

Norton’s theorem:  Any linear two-terminal network may be replaced by a current source IN 

in parallel with a resistance RN. 

Here, IN is the short circuit current of the original circuit. RN = open circuit voltage/short 

circuit current. 

Thevenin – Norton equivalent circuits 

These equivalents can then be used to simplify more complex circuits and circuit elements. 

  b)  i) 

C1 and C2 are decoupling capacitors and correspond to an open circuit at DC operations. 



The Transistor Q1 is a NPN BJT and it operates as a current amplifier. 

R1 and R2 constitute a potential divider, which is the polarization network to the base of the 

transistor. 

R4 increases the emitter voltage as a function of Vbe, introducing a negative feedback on the 

output voltage. 

R3 sets the collector voltage and current. 

  ii) 

Thevenin equivalent circuit can be used to rearrange the polarizing network composed by R1 

and R2. 

Vth= Vdd R2/(R1+R2); Rth= R1//R2 

IB = Vth-VB/Rth; VE = VB - 0.7; IE = VE/R4 = (1+hFE)IB 

VCE=VC – VE => VC= VCE + VE= VCE + VB – 0.7 

IB= VE/R4 (1+hFE)=Vth-VB/Rth hence 

(Vth - VE - 0.7) R4 (1+hFE) = Rth VE 

(Vth - 0.7) R4 (1+hFE) = VE (Rth + R4 (1+hFE)) 

VE = (Vth - 0.7) R4 (1+hFE)/Rth+R4 (1+hFE) 

Then we also know that 

VC = Vcc - ICR3=VCE+VE = Vcc - (hFE VE R3)/(R4 (1+hFE)) therefore    VCE= Vcc - VE (1+(hFE 

R3)/(R4 (1+hFE)) 

Hence, 

VCE = Vcc – (R4 (1+hFE) + hFE R3) (Vth – 0.7)/(Rth + R4 (1+hFE)) 

We know that: 

Vth = 10 R2/(R1+R2) = 1.75V; Rth=R1//R2 = 8.12 kΩ 

hFE = 50 => VCE = 4.56V 

hFE = 300 => VCE = 3.86V      variation is ~15.4%



c) 

d)  

Ignore hre and 1/hoe 

Vi = V’ + hie ib 

V’= R4 (1+hfe) ib 

V0 = -hfe ib R3; Vi = ib (hie + R4 (1+hfe)) 

V0/Vi = (-hfe R3)/(hie + R4 (1+hfe)) 

e) 

R4 sets the emitter voltage and it is required to create a negative feedback effect hence 

stabilising the circuit bias. 

The presence of R4 also reduces the overall gain of the amplifier. 

A bypass capacitor in parallel to R4 can be used to mitigate its effect at the operation 

frequency while preserving the benefits in DC. 

Very popular question attempted by almost everyone. a) Done well although most answers referred to 
resistance rather than impedance. About half forgot to answer the last part about how they can be used to 
simplify circuits. b) i) Quite a variety of different explanations, but most got the roles of the resistors pretty 
much right with a few odd answers.  Many answers lost marks for not explaining what C1 and C2 were in 
the circuit for. b) ii) The hardest section of the question.  There were a wide variety of approaches, which is 
unusual as it is basically taken directly from the 1B examples papers.  The majority got the use of the 
Thevenin equivalent for the base biasing but not many managed to pull together the equations for the 
variation in VCE.  A few erroneously assumed that IB was negligible.  c) Well answered, but many were 
caught by the fact that they should have included hre and hoe as they were not neglected.  Several missed 
vin vout and ib. d) Very well answered, almost all got this right.  e) Also well answered



Question 2 

In order to generate oscillation positive feedback is required. 

If AB = -1, then the gain becomes infinite, and oscillations will 

occur. 

The circuit can produce an output without any external input. 

This can be exploited to make oscillators using circuits which 

give AB = -1 at a particular frequency 

Suppose an external sinusoidal input is applied to the amplifier 

input. 

If the voltage at the output of the passive network is the same 

as this voltage, the switch can be closed and an output will be 

maintained with the original input removed. 

Conditions for oscillation are: 

If we have an ideal Op-Amp: V+ - V- = 0V; and I+ = I- = 0A. 



So, we have at the “–“ node of the Op-Amp 

I1=-V+/R1 = V+-Vo/R2   => V+= R2/(R1+R2) Vo 

At the “+” node of the Op-Amp 

-V+/(L//C) = (V+ - Vo)/R  where L//C= jωL/(1-ω2LC) 

-V+R = jωL (V+ - Vo)/(1-ω2LC) 

Rearranging we get: 

Vo (jωL/(1-ω2LC)) = V+  R(1-ω2LC) + jωR/(R(1- ω2LC)) 

So isolating V+ we have: 

V+ = Vo jωLR/(R(1-ω2LC)+jωLC) = Vo R/(R+ R/jωL(1-ω2LC)) 

Imposing phase zero means 1=ω2LC , ω=1/√LC    which means that V+ = Vo. 

So consequently we have R2/(R1+R2)=1. 

If R2/(R1+R2)<1 then we have decreasing oscillation towards attenuation. 

R2/(R1+R2)>1 we have an over-increase of oscillation. 

c) 

The circuit is a class B amplifier using BJTs. This configuration provides a larger output swing 

and minimizes the power dissipation (active). 

A drawback is the fact that the activation voltage of the BJTs (~ 0.7V) generates a crossover 

distorsion in the output signal as shown below. 



This creates extra harmonics in the signal at the output causing distortions. 

A solution to this is the Class AB amplifier, which required the use of two diodes across the 

bases of Q1 and Q2. Bias for the diodes is provided by two current sources. 

Much less popular question probably as it was on oscillators which is a less known section of the 
course.  Answers overall were good.  a) Done well as a rule, with some getting positive and 
negative feedback confused.  A few used a feedback calculation to explain stability. b) Well 
answered with most getting the derivation of the complex gain right and then getting the resonant 
frequency.  A few less clear answers for the level control section with many not realising the role of 
the non-inverting gain section at resonance. c) Well answered overall as this was pretty much 
book work describing the problems of crossover distortion and its effects on the frequency 
components of the oscillator.
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SECTION B

Answer not more than two questions from this section

 A three-phase 415 V, 50 Hz supply is connected to a balanced star-connected load 

and a balanced delta-connected load. The impedance of each leg of the delta-connected 

load is 300+j150 Ω and each phase of the star-connected load consists of a 400 Ω 
resistor in parallel with a 10 µF capacitor.

(a) Can we analyse this system by an equivalent one-phase circuit? If yes, draw the most
simplified structure of the corresponding one-phase circuit. If no, explain the reason. [4]
Solution:
Yes. Since both loads are balanced they will consume same P and Q in each phase. Thus,
an analysis of one-phase circuit will suffice. The system can be analysed by an equivalent
one-phase circuit as follows.

𝑉ത𝑝ℎ𝑎𝑠𝑒

𝐼 ҧ𝑝ℎ𝑎𝑠𝑒  

𝑍ҧ1 𝑍ҧ2𝑠 

For the star-connected supply: Vphase =
415√
(3)
= 240 V.

For the star-connected load: Z̄1 = R| | 1
jωC =

R
1+ jωC =

400
1+ j2π×50×10×10−6×400

= 155.19 − j194.91 Ω
For the delta-connected load: Z̄2 = 300 + j150 Ω
Then, Z̄2s is derived by transforming delta load to star as follows.

Z̄2s =
Z̄2
3
=

300 + j150 Ω
3

= 100 + j50 Ω

The one-phase circuit can be simplified to

where Z̄total =
Z̄1 Z̄2s

Z̄1+Z̄2s
= 94.6 + j7.75 Ω

(b) Calculate
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𝑉ത𝑝ℎ𝑎𝑠𝑒

𝐼 ҧ𝑝ℎ𝑎𝑠𝑒  

𝑍ҧ𝑡𝑜𝑡𝑎𝑙 

(i) the line current; [4]
Solution:

Īphase =
V̄phase

Z̄1
+

V̄phase

Z̄2s
= 2.52 − j0.21 A = 2.53∠ − 4.68◦ A

In this circuit, the phase and line current are equal.

(ii) the input power; [4]
Solution:

p = 3VphaseIphaseCosφ = 3 × 240 × 2.53 × cos(−4.68) = 1815.53 W

(iii) the input VARs. [4]
Solution:

Qload = 3I2
phaseX = 3 × 2.532 × 7.75 = 148.82 VAR

(c) We wish to alter the power factor of the system to 0.95 lagging.

(i) Explain whether delta-connected capacitors or inductors must be used. [2]
Solution:
Note that capacitors and inductors do not affect P. Thus, the required Q to reach
power factor (PF) equal to 0.95 lagging can be calculated as follows.

Qnew =
P

PF
sin(cos−1(PF)) =

1815.53
0.95

sin(cos−1(0.95)) = 596.75 VAR (1)

The total reactive power must change from 148.82 VAR to 596.75 VAR. Thus,
inductors are required.

(ii) Derive the required value of the capacitors/inductors. [5]
Solution:

For star-connected inductors we have Xs =
V2

phase
Qs

= 240
596.75−148.82 = 128.59 Ω.

Thus, for delta-connected inductors we need XD = 3Xs = 385.77 Ω = 2π50HD.
Thus, we the value of delta-connected inductors must be HD = 1.23 H.
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(iii) Explain whether each of the following parameters change after correcting the
power factor. [2]

A. The total dissipated power
Solution:
The total dissipated power is not affected as capacitors only generate reactive
power.

B. The supply current
Solution:
The supply current changes as follows.

𝐼2̅

𝐼1̅

𝑉ത𝑝ℎ𝑎𝑠𝑒

𝐼�̅�ℎ𝑎𝑠𝑒,2 

𝐻𝐷 �̅�𝑡𝑜𝑡𝑎𝑙 

Iphase,2 = I1 + I2, where I1 = Iphase, i.e., the phase current before correcting
the power factor.

Page 5 of 10 (TURN OVER

This was a straightforward question in three phase systems and altering the power factor. 
Students has shown a great understanding of the one phase equivalent of the system. The 
most common error in first part of this question was on dealing with complex numbers as 
some of students have only derived the absolute value of currents and added them without 
taking care of their magnitude. While deriving the input power and VARs in part b, the 
majority of students were successful, however, a small group of them were confused with line/
phase current and voltage. Part c of the question was a bit challenging as opposed to what the 
students expect, i.e., correcting PF with using capacitors, the question was focused on impact 
of adding inductors. The overall performance of students was good in this question as the 
average mark indicates.  
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 (a) Explain why 3 phase power generation is superior to other number of phases. [4]
Solution:

(a) With single phase, even though less wire is used, efficiency is very low.
Two phase requires the same number of wires as three phase due to three phase
not needing a neutral wire, but it has lower efficiency. Higher number of phases
increase efficiency only marginally but extra wires are required. Hence three-phase
is adopted throughout the world.

(b) A synchronous generator is connected to an infinite bus.

(i) What is an infinite bus? Give an example where infinite bus assumption may
not hold. [3]

(ii) What conditions must be satisfied for a synchronous AC generator to produce
steady torque? Explain why these conditions must be met. [4]

Solution:

(i) Infinite bus means fixed frequency and fix voltage. The bus is so strong that
no single generator can change neither frequency nor voltage. If generators are not
connected to national grid, infinite bus assumption may not hold.

(ii) Condition 1: The rotor and stator fields must have the same number of poles.
Condition 2: Rotor speed must be equal to the speed of the stator driven field. If
these conditions are not met, torque will oscillate sinusoidally with zero average.

(c) A synchronous star-connected generator with 4 poles and a synchronous reactance
of Xs = 0.2Ω, is connected to a 50 Hz infinite bus with line voltage 11 kV.

(i) Find the speed of rotation and the torque of the prime mover if the prime
mover power is set to 400 MW. [2]

(ii) If the prime mover is set to 400 MW and the power factor at the terminals of
the machine is 0.9 lagging, find the excitation voltage. [6]

(iii) If the prime mover power reduces to 250 MW with line voltage and the
excitation voltage that you obtained in (ii) remaining unchanged, calculate the new
power factor. [6]

Solution:

(i)
ωs =

ω

p
=

2π f
p
=

100π
2
= 157.1 rad/s
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T =
P
ωs
=

400 × 106

157.1
= 2550 kNm

(ii)
P = 3IphVph cos θ =⇒ Iph =

P

3 Vl√
3

cos θ
= 23.3 kA

E =
√
(Vph + IphXs sin θ)2 + (IphXs cos θ)2 = 9.37 kV = 16.2 kVline

(iii)

Iph cos θ =
P

3Vph
=

250 × 106

311×103
√

3

= 13.1 kA

Iph sin θ =

√
E2 − (IphXs cos θ)2 − Vph

Xs
= 13.2 kA

Iph =
√

I2
ph cos2 θ + I2

ph sin2 θ = 18.6 kA

cos θ =
13.1
18.6

= 0.704
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This question was the least popular question, probably because it spanned a variety of topics. It 
required information on basics of transmission and synchronous motors (part a and b) as well as 
some calculations regarding the synchronous motors (part c). The answers to the basic 
information questions were available in the lecture notes. The students were overall successful. 
The great majority of them showed that they grasped the basics on both topics. They were also 
quite successful with part c. The common error in part c was wrong use of geometry. I believe this 
is due to the time limitations, so if they had more time, the great majority of the students could 
have achieved near perfect marks.
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 (a) Explain why the induction motor is sometimes known as an asynchronous 
motor. [3]
Solution: If rotor moves at the synchronous speed, it will see a stationary stator field.
Therefore emf induction will not occur and no torque is produced. At any speed other
than synchronous speed torque is produced.

(b) Consider an induction motor.

(i) Draw its equivalent circuit model. [2]
Solution:

R1: Stator winding resistance

X1: Stator winding reactance

R2: Rotor winding resistance

X2: Rotor winding reactance

XM : Magnetising reactance

Ri: Iron core resistance

(ii) What is the locked rotor test? How is the equivalent circuit approximated? [3]
Solution:
Locked motor test prevents the rotor from rotating, hence slip approaches 1. As a
result parallel components can be ignored.

(iii) What is the no load test? How is the equivalent circuit approximated? [3]
Solution:
Rotor rotates freely with no load. No torque is generated, hence slip approaches 0.
As a result, series components can be ignored.

(c) A four-pole star-connected, three-phase induction motor is operated at 1350 rpm
when driven by a line voltage of 600 V at 50 Hz. The equivalent circuit of this induction
motor has the following circuit parameters: R1 = R′2 = 2 Ω, R0 = 2500 Ω, Xm = 500 Ω,
X1=X′2 = 6Ω.

Page 8 of 10 (cont.
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(i) Calculate the value of slip [3]
Solution:

Ns =
60 × 50

2
= 1500 rpm, thus, ωs = 157.1 rad/s

slip =
Ns − Nr

Ns
=

1500 − 1350
1500

= 0.1

(ii) Stating any approximations, calculate the peak torque. [5]
Solution:
Since 2

s + j6 << R0 | | jXm, ignore R0 and Xm.

Vph =
600 V
√

3
= 346.41 V

Sm =
R′2
Zs

Zs =
√

R2
1 + (X1 + X′2)

2 = 12.16 Ω

I′2 =
Vph√

(R′2/s + R1) + X1 + X′2

I′2m =

√√
V2

ph

2Zs(Zs + R1)
= 19.63 A

Tmax =
3
ωs

I′22mR′2
Sm

=
3V2

ph

2ωs(Zs + R1)
=

3 × 346.412

2 × 157.1 × (12.16 + 2)
= 80.91 Nm (2)

(iii) Find the speed at which the maximum torque occurs. [3]
Solution:

Sm =
R′2
Zs
= 0.16

The speed at which peak torque occurs is (1 − Sm) × 1500 = 1260 rpm

(iv) How can we maximize the starting torque of this motor? Derive the required
changes in the circuit elements of the motor. [3]
Solution: By adding extra resistance to the motor, we can maximize the starting
torque, i.e., set the speed at which peak torque occurs to 0.

1 − Sm = 0 −→ Sm = 1 −→
R′2,new

Zs
= 1 (3)

R′2,new = Zs −→ Zs = 12.16 Ω = 2 + R′2,extra (4)

R′2,extra =10.16 Ω

This question was a popular question as well. It focused on some basic theory on induction motors (part a and b), 
and some basic calculations on the induction motors (part c). All students had some understanding on the basics of 
induction motors and almost all of them got near perfect scores on part b, which was equivalent circuits and 
locked-motor and no-load tests. In part c, students needed to have an engineer’s mindset and ignore R_0 and X_m 
as they are much larger than other components. The ones that have missed this point spent lots of time for 
calculations and could not derive the correct answer due to calculation errors



Answer Q6 

 

  

  

 

 

(a)   𝛿𝛿𝛿𝛿 = −𝐿𝐿 (𝑋𝑋2 − 𝑋𝑋1) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  −𝐿𝐿𝛿𝛿𝐿𝐿 𝜕𝜕𝜕𝜕(𝑥𝑥,𝜕𝜕)
𝜕𝜕𝜕𝜕

  ,           𝜕𝜕𝛿𝛿
𝑑𝑑𝐿𝐿� =  −𝐿𝐿 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕�         (1) 

𝛿𝛿𝜕𝜕 = −𝐶𝐶 (𝑋𝑋2 − 𝑋𝑋1) 𝜕𝜕𝜕𝜕(𝑥𝑥,𝜕𝜕)
𝜕𝜕𝜕𝜕

=  −𝐶𝐶𝛿𝛿𝐿𝐿 𝜕𝜕𝜕𝜕(𝑥𝑥,𝜕𝜕)
𝜕𝜕𝜕𝜕

 ,      𝜕𝜕𝜕𝜕
𝑑𝑑𝐿𝐿� =  −𝐶𝐶 𝜕𝜕𝛿𝛿

𝜕𝜕𝜕𝜕�         (2) 
Taking the 2nd differential of V and I in x 
 

 
𝜕𝜕2𝛿𝛿
𝜕𝜕𝐿𝐿2 =  −𝐿𝐿

𝜕𝜕(𝜕𝜕𝜕𝜕
𝜕𝜕𝐿𝐿)

𝜕𝜕𝜕𝜕
�  

Substituting for dI/dx 

 
𝜕𝜕2𝛿𝛿
𝜕𝜕𝐿𝐿2 = 𝐿𝐿𝐶𝐶

𝜕𝜕2𝛿𝛿
𝜕𝜕𝜕𝜕2  

Similarly takingthe 2nd differential of I in X 

               
𝜕𝜕2𝜕𝜕
𝜕𝜕𝐿𝐿2 = 𝐿𝐿𝐶𝐶

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 

Both V and I are functions of distance and time i.e V= V(x,t) and I= I(x,t). As the equations take the 
form of the 2nd differential space being proportional to 2nd differential in time, they describe wave 
equations. Hence V and I behave like waves over the two parallel wires. 

(b) General form of the solution to the wave equation is: 

𝛿𝛿(𝐿𝐿, 𝜕𝜕) =  𝛿𝛿1𝑒𝑒𝑗𝑗(𝜔𝜔𝜕𝜕−𝛽𝛽𝑥𝑥) + 𝛿𝛿2𝑒𝑒𝑗𝑗(𝜔𝜔𝜕𝜕+𝛽𝛽𝑥𝑥) 

The solution allows for waves which travel in the forward x or -x directions (we do not do the 
same in time as we consider negative going time to be unphysical). V1 and V2 can in turn have 
magnitude and phase, hence they are represented in phasor form. The actual measurable 
voltage is the real component of the overall complex voltage. 

𝛿𝛿(𝐿𝐿, 𝜕𝜕) = 𝑅𝑅𝑒𝑒 (𝛿𝛿�1𝑒𝑒𝑗𝑗(𝜔𝜔𝜕𝜕−𝛽𝛽𝑥𝑥) + 𝛿𝛿�2𝑒𝑒𝑗𝑗(𝜔𝜔𝜕𝜕+𝛽𝛽𝑥𝑥)) 

Similarly 

𝜕𝜕(𝐿𝐿, 𝜕𝜕) = 𝑅𝑅𝑒𝑒 (𝜕𝜕1𝑒𝑒𝑗𝑗(𝜔𝜔𝜕𝜕−𝛽𝛽𝑥𝑥) − 𝜕𝜕2𝑒𝑒𝑗𝑗(𝜔𝜔𝜕𝜕+𝛽𝛽𝑥𝑥)) 

But in the negative x direction the current is taken to be reversed  

(c) Using the general solution for voltage in the wave equation one gets 

−𝛽𝛽2 = −𝜔𝜔2𝐿𝐿𝐶𝐶,    
𝜔𝜔
𝛽𝛽

=  
1

√𝐿𝐿𝐶𝐶
 

From (1) above, considering only the forward going wave, one gets 

                 L       

I(t,x) X1                  X2 

        V(t,x)    C 

 



−𝑗𝑗𝛽𝛽𝛿𝛿(𝐿𝐿, 𝜕𝜕) = −𝑗𝑗𝐿𝐿𝜔𝜔𝜕𝜕(𝐿𝐿, 𝜕𝜕),    
𝛿𝛿(𝐿𝐿, 𝜕𝜕)
𝜕𝜕(𝐿𝐿, 𝜕𝜕) = 𝐿𝐿

𝜔𝜔
𝛽𝛽

  

Substituting for the forward going wave from the equation above 

𝛿𝛿�1(𝐿𝐿, 𝜕𝜕)
𝜕𝜕1(𝐿𝐿, 𝜕𝜕)

= �𝐿𝐿
𝐶𝐶

= 𝑍𝑍0 

We define the ratio of voltage to current as an impedance having units ohms. It is not a physical 
impedance as it is not taken across the same two points, but an apparent impedance for the two 
parallel wires seen by the voltage source, termed the characteristic impedance. Note that it is a real 
number and constant in both x and t for defined L and C of the two wire system.  

For the backward going wave 

𝛿𝛿�2(𝐿𝐿, 𝜕𝜕)
𝜕𝜕2(𝐿𝐿, 𝜕𝜕)

= −�𝐿𝐿
𝐶𝐶

= −𝑍𝑍0 

(d) Since𝜔𝜔
𝛽𝛽

=  1
√𝐿𝐿𝐿𝐿

= 1.0𝑋𝑋108  𝜔𝜔 = 2𝜋𝜋107  𝛽𝛽 = 2𝜋𝜋/λ  λ = 10 m 

Considering the 1% variation, 

𝛿𝛿(𝐿𝐿, 𝜕𝜕) = 0.99𝛿𝛿(0, 𝜕𝜕), 𝑅𝑅𝑒𝑒( 𝑒𝑒−𝑗𝑗𝛽𝛽𝑥𝑥) = 0.99,   𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝐿𝐿 = 0.99, 𝛽𝛽𝐿𝐿 = cos−1 0.99  𝑎𝑎𝑎𝑎𝑑𝑑 𝐿𝐿 = 0.23 𝑚𝑚   

- 

(e) (i) The reflection co-efficient at the load is: 

�̅�𝜌 = 𝑍𝑍�𝐿𝐿−𝑍𝑍0
𝑍𝑍�𝐿𝐿+𝑍𝑍0

, 𝑍𝑍0 = � 4.0𝑥𝑥10−7

2.5𝑥𝑥10−10 = 40Ω  𝑧𝑧�̅�𝐿 = 50 + 𝐽𝐽10Ω 

�̅�𝜌 = 10+𝑗𝑗10
90+𝐽𝐽10

 = 0.16<38.7 deg 

(e) (ii) The source voltage is ideal , i.e ZS=0, and has phasor value 𝛿𝛿𝑠𝑠� = 5 < 0 

Along the transmission line the source voltage varies with x according to  

𝛿𝛿𝐹𝐹�(𝐿𝐿) =  𝛿𝛿𝐹𝐹�𝑒𝑒−𝑗𝑗𝛽𝛽𝑥𝑥  

Where 𝛿𝛿𝐹𝐹� is the forward going voltage. 

At the load situated at x=L there is a reflected voltage 

𝛿𝛿𝑅𝑅�(𝐿𝐿) =  �̅�𝜌𝛿𝛿𝐹𝐹�𝑒𝑒−𝑗𝑗𝛽𝛽𝐿𝐿𝑒𝑒𝑗𝑗𝛽𝛽(𝑥𝑥−𝐿𝐿) = �̅�𝜌𝛿𝛿𝐹𝐹�𝑒𝑒𝑗𝑗𝛽𝛽(𝑥𝑥−2𝐿𝐿) 

X=0 is taken to be at the source voltage connection to the transmission line. There is therefore a 
phase shift which must be considered between the forward and backward going wave which gives 
rise to the – 2βL term in the exponent. 

 Or one can term 𝛿𝛿�𝐵𝐵 = �̅�𝜌𝛿𝛿𝐹𝐹�𝑒𝑒−𝑗𝑗𝛽𝛽2𝐿𝐿  𝑎𝑎𝑎𝑎𝑑𝑑 𝛿𝛿(𝐿𝐿) =  𝛿𝛿�𝐹𝐹𝑒𝑒−𝑗𝑗𝛽𝛽𝑥𝑥 + 𝛿𝛿�𝐵𝐵𝑒𝑒𝑗𝑗𝛽𝛽𝑥𝑥 

When the reflected voltage reaches the source end i.e. x=0  

𝛿𝛿𝑅𝑅�(0) =  �̅�𝜌𝛿𝛿𝐹𝐹�𝑒𝑒−𝑗𝑗𝛽𝛽2𝐿𝐿 

The voltage x=0 is  𝛿𝛿�𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑠𝑠�    as ZS=0, hence 



𝛿𝛿�𝑠𝑠 =  𝛿𝛿𝐹𝐹�(0) + 𝛿𝛿𝑅𝑅�(0) = 𝛿𝛿𝐹𝐹�(1 + �̅�𝜌𝑒𝑒−𝑗𝑗𝛽𝛽2𝐿𝐿  ) 

𝛿𝛿�𝐹𝐹 =
𝛿𝛿𝑠𝑠�

(1 + �̅�𝜌𝑒𝑒−𝑗𝑗𝛽𝛽2𝐿𝐿  )
 

The general voltage along the line is given as:  𝛿𝛿 � (𝐿𝐿) =  𝛿𝛿𝐹𝐹�(𝐿𝐿) + 𝛿𝛿𝑅𝑅�(𝐿𝐿) 

Therefore 𝛿𝛿 � (𝐿𝐿) =  𝜕𝜕𝑠𝑠�
(1+𝜌𝜌�𝑒𝑒−𝑗𝑗𝑗𝑗2𝐿𝐿 )

 (𝑒𝑒−𝑗𝑗𝛽𝛽𝑥𝑥 + �̅�𝜌𝑒𝑒𝑗𝑗𝛽𝛽(𝑥𝑥−2𝐿𝐿) 

𝛿𝛿�(𝐿𝐿) = 𝑅𝑅𝑒𝑒( 𝛿𝛿�(𝐿𝐿) )(which oscillates in ωt hence the phasor notation). 

(e) (iii) 

The reflection co-efficient at the load is 0.16<38.7   

The voltage at the load x = L is therefore 

𝑅𝑅𝑒𝑒 �𝛿𝛿�(𝐿𝐿)� = 𝑅𝑅𝑒𝑒� 𝛿𝛿�𝐹𝐹𝑒𝑒−𝑗𝑗𝛽𝛽𝐿𝐿 + 𝛿𝛿�𝐹𝐹�̅�𝜌𝑒𝑒−𝑗𝑗𝛽𝛽𝐿𝐿� = 𝑅𝑅𝑒𝑒( 𝛿𝛿�𝐹𝐹𝑒𝑒−𝑗𝑗𝛽𝛽𝐿𝐿(1 + �̅�𝜌))  

β = 2π/10  m-1 and L= 5m   βL = π    and 2βL = 2π 

 𝑅𝑅𝑒𝑒 �𝛿𝛿�(𝐿𝐿)� = 𝑅𝑅𝑒𝑒 � 5
(1+𝜌𝜌�𝑒𝑒−𝑗𝑗2𝜋𝜋)

. 𝑒𝑒−𝑗𝑗𝑗𝑗(1 + �̅�𝜌)� =  −5 V 

       𝛿𝛿�(𝐿𝐿) =  −𝛿𝛿�𝑠𝑠 

The load voltage is 180 deg out of phase with the source voltage, the time domain signal is: 

𝛿𝛿(𝜕𝜕, 𝐿𝐿) = 5 cos(𝜔𝜔𝜕𝜕 − 𝜋𝜋) 𝛿𝛿 

 

A question on transmission lines. The first part (a- c) examined the understanding of the fundamental 
theoretical concepts and the implication of having spatially distributed voltage and current signals. 
Most of the candidates attempting the question were able elucidate the existence of voltage and current 
waves in transmission lines and the consequence of having reflected waves. Parts d and e we problem 
based around microstrip connections on a printed circuit board. Part d was a practical and simple 
estimation of the length of the microstrip connection above which transmission line behaviour should 
be considered. Surprisingly many students were unable to do this, a direct consequence of which is the 
low average mark. Those who did understand what was required, about half those attempting, fell over 
in not being able to solve a very simple complex exponential equation. There seems to be an almost 
universal unfamiliarity with De Moirve’s expansion of a complex exponential and considering only the 
real part. Many tried to solve it by taking natural logarithms.  Part d was a substantial problem (in 3 
parts) on transmission line propagation. Most could calculate the reflection co-efficient at the load. 
The better students (10%) made a good attempt at deriving the standing wave expression and the 
voltage at the load. 

 



Question 7 

a) ∇ ̅𝑋�̅� =  −
𝜕

𝜕𝑡
𝐵 ̅  and  ∇ ̅𝑋�̅� = 𝐽̅ +  𝜖𝑜

𝜕

𝜕𝑡
𝐷 ̅

Also �̅� = 𝜇𝑜�̅� 

∇̅𝑋(∇ ̅𝑋�̅�) =  −
𝜕

𝜕𝑡
(∇̅𝑋𝐵 ̅) 

Using the vector identity 

∇̅𝑋(∇ ̅𝑋�̅�) =  ∇̅∇̅. �̅� − ∇2̅̅ ̅�̅� 

And noting that ∇ ̅. �̅� = 𝜖𝑜(∇ ̅. �̅�) = 𝜌 and that and J = 0in free space

∇2̅̅ ̅�̅� =  𝜇𝑜

𝜕

𝜕𝑡
(∇̅𝑋𝐻 ̅̅ ̅)

Substituting the 2nd Maxwell equation 

∇2̅̅ ̅�̅� = 𝜖𝑜 𝜇𝑜

𝜕2

𝜕𝑡2
𝐸 ̅

Similarly noting that ∇ ̅. �̅� = 𝜇𝑜(∇ ̅. �̅�) = 0

∇2̅̅ ̅�̅� = 𝜖𝑜 𝜇𝑜

𝜕2

𝜕𝑡2
𝐻 ̅̅ ̅ 

These are both wave equations. Hence the electric field and magnetic field propagate through 

free space as waves when there is a time varying electric or magnetic field (one induces the 

other according to Maxwell’s equations) in free space. 

b) Taking the general case of �̅� =  𝐸𝑥𝑎𝑥̅̅ ̅ + 𝐸𝑦𝑎𝑦̅̅ ̅ + 𝐸𝑧𝑎𝑧̅̅ ̅  as all components have to conform to

the wave equations, a general solution will have the form:

𝐸𝑥𝑎𝑥̅̅ ̅ = 𝐸𝑥𝑜𝑒±𝑗(𝜔𝑡−𝛽𝑧)𝑎𝑥̅̅ ̅ + 𝐸𝑥𝑜𝑒±𝑗(𝜔𝑡−𝛽𝑦)𝑎𝑥̅̅ ̅ +𝐸𝑥𝑜𝑒±𝑗(𝜔𝑡−𝛽𝑥)𝑎𝑥̅̅ ̅

(as we are considering propagation in free space we do not need to consider any waves 

travelling in the -x direction as there are no boundaries to reflect from). 

Therefore substituting any given component into the wave equation one gets 

𝛽2 =  𝜖𝑜 𝜇𝑜𝜔2  and 
𝜔

𝛽
= 1/√𝜖𝑜 𝜇𝑜 . The velocity of any wave component is obtained by

considering an observer travelling at the same speed as the wave. In which case the value of 

the electric (magnetic) field will be constant. Hence  (𝜔𝑡 − 𝛽𝑥𝑥) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝜕

𝜕𝑡
(𝜔𝑡 − 𝛽𝑥𝑥) = 0;  

𝜕𝑥

𝜕𝑡
=

𝜔

𝛽𝑥
 is the velocity of the electromagnetic wave in the x direction. 

But form the general solution we see that this is a constant, which is the same in any 

direction.  

Using the data book values for  𝜖𝑜 and 𝜇𝑜, 



1

√𝜖𝑜 𝜇𝑜
=  

1

√8.854𝑥10−12.4𝜋𝑥10−7
= 2.998 𝑥 108 𝑚𝑠−1.  This is the same as the measured 

velocity of visible light ( see data book for velocity of light). Hence the conclusion that visible 

light is a form of electromagnetic wave, with electric and magnetic field components. 

c) Considering the Maxwell equation ∇ ̅𝑋�̅� =  −𝜇𝑜
𝜕

𝜕𝑡
𝐻 ̅̅ ̅ 

(
𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
) �̅�𝑥 + (

𝜕𝐸𝑥

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑥
) �̅�𝑦 + (

𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
) �̅�𝑧 =  −𝜇𝑜

𝜕

𝜕𝑡
(𝐻𝑥𝑎𝑥̅̅ ̅ + 𝐻𝑦𝑎𝑦̅̅ ̅ + 𝐻𝑧𝑎𝑧̅̅ ̅) 

As �̅� =  𝐸𝑥𝑎𝑥̅̅ ̅  as it is confined in the x-y plane and defined only in one direction, and it does not 

vary in the x-y plane 
𝜕𝐸𝑥

𝜕𝑦
=

𝜕𝐸𝑥

𝜕𝑥
= 0,

𝜕𝐸𝑥

𝜕𝑧
�̅�𝑦 = −𝜇𝑜

𝜕

𝜕𝑡
(𝐻𝑦𝑎𝑦)̅̅ ̅̅ ̅ 

And 

−
𝜕𝐻𝑦

𝜕𝑧
�̅�𝑥 = 𝜖𝑜

𝜕

𝜕𝑡
(𝐸𝑥𝑎𝑥)̅̅ ̅̅̅ 

From the general solution above with only one component of 𝐸 ̅𝑎𝑛𝑑 �̅� 

For a plane wave one gets 
𝐸𝑥

𝐻𝑦
=  

𝜔𝜇𝑜

𝛽

From the solution to b) we know 
𝜔

𝛽
= 1/√𝜖𝑜 𝜇𝑜 

𝐸𝑥

𝐻𝑦
=  √

𝜇𝑜

𝜖𝑜
= 377 

Which has units of ohms ( Vm-1/ Am-1) and is defined as the characteristic impedance of free 

space. It allows one to express the magnitude of magnetic field as a constant factor of the 

orthogonal electric field magnitude and vice versa.  

d) 

(i) As the E field is given by  �̅� = (𝐸𝑜sin 𝜃 sin(𝜔𝑡 − 2𝜋𝑟/)/𝑟�̅�𝜃he corresponding magnetic 

field is given by 

�̅� = (𝐸𝑜sin 𝜃 sin 𝜔(𝑡 − 2𝜋𝑟/))/(𝑟√
𝜇𝑜

𝜖𝑜
) . �̅�∅The orientation in the  where as the electric 

field is in the direction. 

(ii) From Poynting’s theorem for power density in the field 

𝑆̅ = �̅�𝑋�̅� 

𝑆̅ =  (𝐸𝑜
2𝑠𝑖𝑛2 𝜃 𝑠𝑖𝑛2(𝜔𝑡 − 2𝜋𝑟/))/(𝑟2√

𝜇𝑜

𝜖𝑜
) . �̅�𝑟Wm-2 

Power transmission is in the radial direction orthogonal to and 



(iii) The power density at r = 100R will be 

𝑆̅ =  (𝐸𝑜
2𝑠𝑖𝑛2 𝜃 𝑠𝑖𝑛2( 𝜔𝑡 − 2𝜋100))/(𝑅2√

𝜇
𝑜

𝜖𝑜

) . �̅�𝑟 

Additionally  = 

The area over which the receiving antenna collects power is 𝑅𝛿𝜃. 𝑅 sin 𝜃𝛿∅ 

Hence      𝑃𝑜𝑤𝑒𝑟 𝑡𝑜 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 =  𝐸𝑜
2 𝑠𝑖𝑛2(𝜔𝑡 − 2𝜋100))𝑅2𝛿𝜃𝛿∅/(𝑅2√

𝜇𝑜

𝜖𝑜
) . 

Average 𝑃𝑜𝑤𝑒𝑟 𝑡𝑜 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 =  
1

2𝜋
𝐸𝑜

2. 𝛿𝜃𝛿∅/√
𝜇𝑜

𝜖𝑜
. ∫ 𝑠𝑖𝑛2( 𝜔𝑡 − 2𝜋100)𝑑𝜔𝑡

2𝜋

0
 

=
800𝑥0.01

377
= 21𝑚𝑊 

(𝑠𝑖𝑛2𝜃 = 0.5(1 − cos 2𝜃) and integral of cos 2is 0 over the integration of one period) 

A question on Maxwells’s equations and free space radiation. This was the more popular 
question in Section C. The first part (a – c) concerned the prediction of EM waves in free space 
from Maxwell’s equations. It was pleasing (especially given this is perhaps the most demanding 
material encountered in 1B but presented at the very end) that a significant majority of the 
candidates were proficient in vector analysis to use Maxwell’s equations to predict wave 
propagation. They were also aware of the physical consequences of this prediction. The last part 
was a problem based around transmitting and receiving radio antennae. Again, it was pleasing, 
in fact surprisingly so, how a large number of candidates understood the concepts of EM radio 
transmission and were able to handle the analysis. Many got perfect answers, to what was a 
challenging problem. It is reassuring to know that we have some very able and excellent 
students. Unfortunately, the average mark does not reflect this as the not so good 20% scored 
less than 30%! 




