SECTION A

Question 1)

If an amplifier with gain A is subject to positive feedback from its output to its input via a network B, explain what conditions would result in an oscillatory output.

For oscillations to occur the loop gain should be unity and the loop phase should be 0 or 2 pi, i.e. $A B=1$

The circuit in Fig. 1 is an oscillator based on four ideal operational amplifiers (OP1, OP2, OP3 and OP4), where a D.C. voltage $V_{\text {ref }}=2.5 \mathrm{~V}$ is provided to OP 1 to provide a D.C. offset for the signal to allow for operation with a single-ended 5 V power supply.

If V_{X} and V_{Y} denote the voltages at the points X and Y marked on the circuit in Fig. 1, by considering the signal passing through OP1, show that

$$
\begin{equation*}
V_{Y}=-\frac{R_{2}}{R_{1}}\left(V_{X}-V_{\text {ref }}\right)+V_{\text {ref }} \tag{3}
\end{equation*}
$$

Current at inverting input is

$$
\frac{V_{X}-V_{\text {ref }}}{R_{1}}=\frac{V_{r e f}-V_{Y}}{R_{2}}
$$

Hence

$$
V_{Y}=-\frac{R_{2}}{R_{1}}\left(V_{X}-V_{r e f}\right)+V_{r e f}
$$

As required
By considering the signal passing clockwise around the circuit from Y to X, passing through OP2, OP3 and OP4, show that

$$
V_{X}=\left(\frac{1}{1+j \omega R C}\right)^{4} V_{Y}
$$

Simple potential divider at the input of the OP2 gives

$$
\begin{equation*}
\frac{V_{+}}{V_{Y}}=\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{1+j \omega R C} \tag{4}
\end{equation*}
$$

So output of OP2 is $V_{-}=V_{+}=\frac{V_{Y}}{1+j \omega R C}$.
This voltage is then divided at the input to OP3, so that the output of OP3 is $\frac{V_{Y}}{(1+j \omega R C)^{2}}$.
Hence the input to OP4 is $\frac{V_{Y}}{(1+j \omega R C)^{3}}$. This is also the output of OP4 which is then divided by the RC circuit to give

$$
V_{X}=\frac{V_{Y}}{(1+j \omega R C)^{4}}
$$

as required
Derive an expression for the oscillation frequency for the circuit in Fig. 1 and the required value for R_{2} / R_{1} for stable oscillations at this frequency.

For an A.C. signal the effect of $V_{\text {ref }}$ may be neglected since it only corresponds to a D.C. offset, therefore the loop gain is

$$
A B=-\frac{R_{2}}{R_{1}(1+j \omega R C)^{4}}
$$

We require $|A B|=1$ and $\angle A B=0$
The phase shift for the loop is

$$
\pi-4 \tan ^{-1}(\omega R C)
$$

Which should be total of zero phase
So $\tan ^{-1}(\omega R C)=\pi / 4$ and hence $\omega_{r}=1 / R C$
Therefore for a round trip unity gain gives

$$
\left|\frac{1}{1+j}\right|^{4} \frac{R_{2}}{R_{1}}=1
$$

Therefore $\frac{R_{2}}{R_{1}}=4$

Due to finite resistor values the amplifier gain is 4% higher than the ideal, calculate the corresponding percentage change in the oscillation frequency. You may assume that this small deviation has a minimal impact on the loop phase.

$$
\left[1+(\omega R C)^{2}\right]^{2}=4 \times 1.04
$$

So

$$
1+(\omega R C)^{2}=2 \times 1.02
$$

So

$$
(\omega R C)^{2}=1.04
$$

Therefore

$$
\omega R C=1.02
$$

So the oscillation frequency will increase by 2%.

Question 2)

In the amplifier circuit shown in Fig. 2, the transistor is biased at an operating point such that $I_{B}=10 \mu \mathrm{~A}, I_{c}=2 \mathrm{~mA}, V_{B E}=0.7 \mathrm{~V}$, and $V_{C E}=5 \mathrm{~V}$. At this operating point $h_{f e}=250$, $h_{i e}=5 \mathrm{k} \Omega$ and the other transistor parameters $h_{r e}$ and $h_{o e}$ may be neglected.
(a) Assuming the transistor is biased to maximise the output signal before clipping occurs, i.e. $V_{C}=V_{C C} / 2$, determine appropriate values for the R_{C} and R_{E} stating any assumptions made.

Set $V_{C}=V_{C C} / 2=10 \mathrm{~V}$ therefore

$$
R_{C}=\frac{10}{2 \times 10^{-3}}=5 \mathrm{k} \Omega
$$

If $V_{C E}=5 \mathrm{~V}$ and $V_{C}=10 \mathrm{~V}$ then $V_{E}=5 \mathrm{~V}$. Assume that $I_{E} \approx I_{C}$ therefore

$$
R_{E}=\frac{5}{2 \times 10^{-3}}=2.5 \mathrm{k} \Omega
$$

(b) If the current flowing through R_{2} is designed to be $10 I_{B}$, determine appropriate values for R_{1} and R_{2}.
$V_{E}=5 \mathrm{~V}$ therefore $V_{B}=5.7 \mathrm{~V}$. The voltage across R_{2} is therefore $20-5.7=14.3 \mathrm{~V}$.
Current through $R_{2}=10 \times I_{B}=100 \mu \mathrm{~A}$ therefore

$$
R_{2}=\frac{14.3}{100 \times 10^{-6}}=143 \mathrm{k} \Omega
$$

the current flowing through R_{1} will be $9 \times I_{B}=90 \mu \mathrm{~A}$ and the voltage across R_{1} will be 5.7V therefore

$$
R_{1}=\frac{5.7}{90 \times 10^{-6}}=63.3 \mathrm{k} \Omega
$$

Draw a small-signal equivalent circuit for the amplifier valid for mid-band frequencies (where the reactance of the capacitors C_{i}, C_{o} and C_{E} may be assumed to be zero).

Using the small-signal circuit, calculate
(i) The small-signal voltage gain
(ii) The small-signal input resistance
(iii) The small-signal output resistance
i)

$$
\begin{gathered}
i_{b}=\frac{v_{i}}{h_{i e}} \\
v_{o}=-h_{f e} i_{b} R_{C}=-\frac{h_{f e} v_{i} R_{C}}{h_{i e}}
\end{gathered}
$$

Therefore small signal gain is

$$
\frac{v_{o}}{v_{i}}=-\frac{h_{f e} R_{C}}{h_{i e}}=\frac{-250 \times 5 \times 10^{3}}{5 \times 10^{3}}=-250
$$

ii) Small signal input resistance is

$$
R_{1}| | R_{2}| | h_{i e}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{h_{i e}}\right)^{-1}=\left(\frac{1}{63.3 \times 10^{3}}+\frac{1}{143 \times 10^{3}}+\frac{1}{5 \times 10^{3}}\right)^{-1}=4.5 \mathrm{k} \Omega
$$

iii) Small-signal output resistance is
$v_{i}=0$, therefore $i_{b}=0$ therefore current source becomes an open circuit such that

$$
r_{o}=R_{C}=5 \mathrm{k} \Omega
$$

If the capacitor C_{E} is now omitted from the circuit such that the impedance between the emitter and the ground is R_{E}, draw the small-signal equivalent circuit for this modified circuit and calculate
(i) The small-signal voltage gain
(ii) The small-signal input resistance
(iii) The small-signal output resistance

(i) The small-signal voltage gain

$$
\begin{gathered}
v_{o}=-h_{f e} i_{b} R_{C} \\
v_{i}=i_{b} h_{i e}+\left(1+h_{f e}\right) i_{b} R_{E} \\
\frac{v_{o}}{v_{i}}=-\frac{h_{f e} R_{C}}{h_{i e}+\left(1+h_{f e}\right) R_{E}}=-\frac{250 \times 5 \times 10^{3}}{5 \times 10^{3}+251 \times 2.5 \times 10^{3}}=-1.97
\end{gathered}
$$

ii) The small-signal input resistance

$$
\begin{array}{r}
\text { Input current } i_{i}=\frac{v_{i}}{R_{1}}+\frac{v_{i}}{R_{2}}+i_{b} \\
\qquad v_{i}=h_{i e} i_{b}+\left(1+h_{f e}\right) i_{b} R_{E}
\end{array}
$$

Therefore

$$
i_{i}=\frac{v_{i}}{R_{1}}+\frac{v_{i}}{R_{2}}+\frac{v_{i}}{h_{i e}+\left(1+h_{f e}\right) R_{E}}
$$

Therefore input impedance

$$
\begin{aligned}
r_{i}=\frac{v_{i}}{i_{i}}=\left(\frac{1}{R_{1}}\right. & \left.+\frac{1}{R_{2}}+\frac{1}{h_{i e}+\left(1+h_{f e}\right) R_{E}}\right)^{-1} \\
& =\left(\frac{1}{63.3 \times 10^{3}}+\frac{1}{143 \times 10^{3}}+\frac{1}{5 \times 10^{3}+251 \times 2.5 \times 10^{3}}\right)^{-1} \\
& =41 \mathrm{k} \Omega
\end{aligned}
$$

iii) The small-signal output resistance $v_{i}=i_{b} h_{i e}+\left(1+h_{f e}\right) i_{b} R_{E}$

Set $v_{i}=0$ therefore $i_{b}=0$, hence current source becomes open circuit as before and thus

$$
r_{o}=R_{C}=5 \mathrm{k} \Omega
$$

As before

Question 3)

(a) (i)

Start with Load D:
R and X parallel, so simply
$\mathrm{P}=3 \mathrm{~V}^{2} / \mathrm{R}=3 \times(415 \mathrm{~V})^{2} / 12 \Omega=43 \mathrm{~kW}$
$\mathrm{Q}=3 \mathrm{~V}^{2} / \mathrm{X}=3 \times(415 \mathrm{~V})^{2} / 8 \mathrm{~V} / \mathrm{A}=65 \mathrm{kVar}$
$\mathrm{S}=\operatorname{sqrt}\left(\mathrm{P}^{2}+\mathrm{Q}^{2}\right)=78 \mathrm{kVA}$
Continue with Load Y :
R and X in series and different in each arm!
Calculate current of the first two arms
$\mathrm{I}_{\mathrm{r} 1,2}=240 \mathrm{~V} / \mathrm{sqrt}\left((20 \Omega)^{2}+(10 \mathrm{~V} / \mathrm{A})^{2}\right)=10.7 \mathrm{~A}$
Calculate current of the third arm
$\mathrm{I}_{\mathrm{Y} 3}=240 \mathrm{~V} / \mathrm{sqrt}\left((10 \Omega)^{2}+(5 \mathrm{~V} / \mathrm{A})^{2}\right)=21.5 \mathrm{~A}$
Power is now the sum (with the respective resistance):
$P=2 \times\left(I_{Y 1,2^{2}} 20 \Omega\right)+1 \times\left(I_{\gamma_{3}}{ }^{2} 10 \Omega\right)=4608 \mathrm{~W}+4608 \mathrm{~W}=9.2 \mathrm{~kW}$
Reactive power would be
$\mathrm{Q}=-2 \times\left(\mathrm{I}_{\mathrm{Y}, 2}{ }^{2} 10 \mathrm{~V} / \mathrm{A}\right)-1 \times\left(\mathrm{I}_{\mathrm{y}^{2}}{ }^{2} 5 \mathrm{~V} / \mathrm{A}\right)=2304 \mathrm{Var}+2304 \mathrm{Var}=4.6 \mathrm{kVar}$
$\mathrm{S}=10.3 \mathrm{kVA}$
(ii)

Calculate the needed compensation in star configuration.
For compensation, the three arms would need to become equal. Increasing with a parallel load is not possible, so can only bring the arms with larger resistance and reactance down:
Add 20Ω in series with $10 \mathrm{~V} / \mathrm{A}$ to the first two arms in star configuration, open circuit to the third.
(iii)

Simply three times 10Ω active and $5 \mathrm{~V} / \mathrm{A}$ reactive in series.
(b)(i)

Line current of Load D
$I_{\mathrm{d}, \text { act }}=415 \mathrm{~V} / 12 \Omega=34.6 \mathrm{~A}$
$l_{\text {d, react }}=415 \mathrm{~V} / 8 \mathrm{~V} / \mathrm{A}=51.9 \mathrm{~A}$
Power (which would also lead to line current of Load R):
$P_{r}=3 \times l_{Y 3}{ }^{2} 10 \Omega=13.8 \mathrm{kVA}$
$\mathrm{Q}_{\mathrm{r}}=3 \times \mathrm{l}_{\mathrm{Y} 3}{ }^{2} 5 \mathrm{~V} / \mathrm{A}=6.9 \mathrm{kVar}$
$\Rightarrow I_{r, \text { act }}=P_{r} /(3 \times 240 \mathrm{~V})=19.2 \mathrm{~A}$
$\Rightarrow I_{r, \text { react }}=Q_{r} /(3 \times 240 \mathrm{~V})=9.6 \mathrm{~A}$
(check total current magnitude: 21.5 A as in (a))

Full line current through power:
$P_{\text {total }}=43 \mathrm{~kW}+\mathrm{Pr}_{\mathrm{r}}=56.8 \mathrm{~kW}$
$Q_{\text {total }}=65 \mathrm{kVar}-\mathrm{Q}_{\mathrm{r}}=58 \mathrm{kVar}$
$\Rightarrow I_{\text {total }, \text { act }}=P_{\text {total }} /(3 \times 240 \mathrm{~V})=78.9 \mathrm{~A}$
$\Rightarrow I_{\text {total }, \text { react }}=Q_{\text {total }} /(3 \times 240 \mathrm{~V})=80.5 \mathrm{~A}$
$I_{\text {total }}=112.7 \mathrm{~A}$
(ii)
$\tan \phi=80.5 \mathrm{~A} / 78.9 \mathrm{~A}=1.02 \Rightarrow \phi=45.58^{\circ}$
$\cos \phi=0.7$
(c)(i)

Unity power factor needs $-58 \mathrm{kVar}=3 \mathrm{~V}^{2} / \mathrm{X}_{\mathrm{c}}$ with three capacitors
$\Rightarrow X_{c}=-3(240 \mathrm{~V})^{2} / 58000 \mathrm{Var}=-3.0 \mathrm{~V} / \mathrm{A}=-1 /(\mathrm{j} \omega \mathrm{C})$
$\Rightarrow C=1.06 \mathrm{mF}$
(ii)
$\cos \phi=0.95=>\tan \phi=0.329$
$\Rightarrow Q_{\text {target }}=P \tan \phi=56.8 \mathrm{~kW} \times 0.329=18.7 \mathrm{kVar}$
$\Rightarrow \mathrm{Q}_{\text {comp }}=58 \mathrm{kVar}-18.7 \mathrm{kVar}=39 \mathrm{kVar}$
$\Rightarrow X_{C}=-3(240 \mathrm{~V})^{2} / 39 \mathrm{kVar}=-4.4 \mathrm{~V} / \mathrm{A}$
$\Rightarrow C=0.72 \mathrm{mF}$
(d)

Unity case: $\mathrm{S}=\mathrm{P}=>\mathrm{I}_{\mathrm{L}}=56.8 \mathrm{~kW} /(3 \times 240 \mathrm{~V})=78.9 \mathrm{~A}$ from previously 112.7 A
=> 70% of previous current or -30%
$\cos \phi=0.95$:
$\mathrm{L}_{\mathrm{L}, \text { react }}=\mathrm{Q}_{\text {target }} /(3 \times 240 \mathrm{~V})=26 \mathrm{~A}$
$=>I_{L}=\operatorname{sqrt}\left((26 A)^{2}+(78.9 A)^{2}\right)=83.1 \mathrm{~A}$
=> 74% of previous current or -26%

SECTION B

Question 4)

(a)

Slip in braking mode <0
At synchronous speed (no load, no friction) $s=0$
At speed 0, s = 1
When braking, torque points in opposite direction compared to speed => neg. mechanical power
(b)(i)

Blocked rotor: $s=1$
(ii)

Air gap
R_{1} : copper resistance in stator
L_{1} : stator stray inductance/reactance
R_{fe} or R_{i} : equivalent iron-loss resistance
$\mathrm{L}_{1 \mathrm{~m}}$: magn. reactance

L'2: rotor stray inductance/reactance (referred to stator)
R': rotor resistance (can be split into loss and the equivalent part converted into mechanical power, both referred to the stator)
(iii)

No-load test at $3000 \mathrm{rpm}, \mathrm{R}_{2}^{\prime} / \mathrm{s}$ infinitely large
R_{i} and X_{1} large compared to X_{1} and $R_{1}=>$ entire voltage drop on them
$\Rightarrow 3 \mathrm{~V}^{2} / R_{i}=1200 \mathrm{~W} \Rightarrow R_{i}=430.6 \Omega$
$=>I_{\mathrm{Ri}}=1 / \mathrm{V} 3415 \mathrm{~V} / \mathrm{R}_{\mathrm{i}}=0.556 \mathrm{~A} ; \mathrm{I}_{\mathrm{Xh}}=\operatorname{sqrt}\left((8 \mathrm{~A})^{2}-I_{\mathrm{Ri}}{ }^{2}\right)=7.98 \mathrm{~A}=1 / \mathrm{V} 3415 \mathrm{~V} / \mathrm{X}_{\mathrm{h}}$
$\Rightarrow X_{h}=30 \mathrm{~V} / \mathrm{A}$
Locked rotor with $s=1$, neglect R_{i} and X_{i}
$X_{1}=X_{2}^{\prime}$
$3(I / V 3)^{2}\left(R_{1}+R_{2}{ }^{\prime}\right)=667 \mathrm{~W}=>R_{1}+R^{\prime}{ }_{2}=2.61 \Omega$
$(16 A / V 3)^{2}\left(4 X_{1}^{2}+\left(R_{1}+R_{2}^{\prime}\right)^{2}\right)=(30 V)^{2}$
$\Rightarrow X_{1}{ }^{2}=1 / 4\left((30 V)^{2} /(16 A / V 3)^{2}-\left(R_{1}+R_{2}{ }^{\prime}\right)^{2}\right)=0.934 V^{2} / A^{2}$
$\Rightarrow X_{1}=X_{2}{ }^{\prime}=0.966 \mathrm{~V} / \mathrm{A}$

From sole stator measurement
$\left(\mathrm{R}_{1} 16 \mathrm{~A} / \mathrm{V} 3\right)^{2}+\left(\mathrm{X}_{1} 16 \mathrm{~A} / \mathrm{V} 3\right)^{2}=(22.6 \mathrm{~V})^{2}$
$\Rightarrow R_{1}{ }^{2}=(22.6 \mathrm{~V})^{2}-\left(X_{1} 16 \mathrm{~A} / \mathrm{V} 3\right)^{2} 3 /(16 \mathrm{~A})^{2}=3 /(16 \mathrm{~A})^{2}(22.6 \mathrm{~V})^{2}-\left(\mathrm{X}_{1}\right)^{2}=4.99 \Omega^{2}$
$\Rightarrow R_{1}=2.2 \Omega$
$\Rightarrow R_{2}{ }^{\prime}=2.61 \Omega-2.2 \Omega=0.41 \Omega$
(c)(i)

Rotor resistance $\mathrm{R}_{2}{ }^{\prime} / \mathrm{s}=\mathrm{R}_{2}{ }^{\prime}(1+1 / \mathrm{s}-1)$
loss resistance: $\mathrm{R}_{2}{ }^{\prime}$
component modelling the power transfer to the mechanical domain: $R_{2}{ }^{\prime}(1 / s-1)$
(ii)
$\mathrm{s}=1-2700 \mathrm{rpm} / 3000 \mathrm{rpm}=0.1$
(iii)

Total current path: $R_{1}->X_{1}->X_{2}^{\prime}->R_{2}{ }^{\prime}->R_{2}{ }^{\prime}(1 / s-1)$
Current: I = V $3415 \mathrm{~V} / \mathrm{sqrt}\left(\left(R_{1}+R_{2}{ }^{\prime} / \mathrm{s}\right)^{2}+4 \mathrm{X}^{2}{ }^{2}\right)=\mathrm{V} 3415 \mathrm{~V} / \mathrm{sqrt}\left((2.2 \Omega+0.41 \Omega / 0.1)^{2}\right.$
$\left.+4 \mathrm{x} 0.934 \mathrm{~V}^{2} / \mathrm{A}^{2}\right)=\mathrm{V} 3415 \mathrm{~V} / 6.59 \mathrm{~V} / \mathrm{A}=109 \mathrm{~A}$
$\mathrm{P}_{\mathrm{r}}=3 \times \mathrm{R}_{2}{ }^{\prime}(\mathrm{I} / \mathrm{V} 3)^{2}=4878 \mathrm{~W}$
$\mathrm{P}_{\mathrm{s}}=3 \times \mathrm{R}_{1}(\mathrm{I} / \mathrm{V} 3)^{2}=26175 \mathrm{~W}$

Question 5)

a)

$$
\mathrm{V}=1 / \sqrt{L C}=1 /\left(400 \times 10^{-9} \times 100 \times 10^{-12}\right)^{0.5}=1.58 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

$\mathrm{Z}=(\mathrm{L} / \mathrm{C})^{0.5}=63.25 \Omega$
Assuming $\mu_{\mathrm{r}}=1$
$\mathrm{V}=\frac{1}{\sqrt{\varepsilon_{0} \varepsilon_{r} \mu_{0} \mu_{r}}}=\frac{c}{\sqrt{\varepsilon_{r}}}$
With $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Therefore
$\varepsilon_{\mathrm{r}}=\mathrm{c}^{2} / \mathrm{v}^{2}=3.61$
b)
wavelength $\lambda=\mathrm{V} / \mathrm{f}=1.58 \times 10^{8} / 250 \times 10^{6}=0.632 \mathrm{~m}$
for open circuit, length $=\lambda / 4=0.158 \mathrm{~m}$
for short circuit, length $=\lambda / 4=0.316 \mathrm{~m}$
c)
$\rho_{\mathrm{L}}=\frac{Z_{\mathrm{L}}-Z_{0}}{Z_{\mathrm{L}}+Z_{0}}=\frac{150-63.25}{150+63.25}=0.41$
$\operatorname{VSWR}=\frac{1+\left|\rho_{L}\right|}{1-\left|\rho_{L}\right|}=2.39$
d)
$\mathrm{V}_{\mathrm{GEN}}=150 \mathrm{~V}$ rms
$\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{GEN}}\left(1+\rho_{\mathrm{L}}\right)=211.5 \mathrm{~V}$
Power $=\mathrm{V}_{\mathrm{L}}{ }^{2} / \mathrm{R}=298.2 \mathrm{~W}$

Question 6)

a)

Peak power intensity $=\frac{\text { Gain } \cdot \text { Power }}{4 \pi r^{2}}=\frac{2500 \cdot 30}{4 \pi\left(3 \cdot 10^{7}\right)^{2}}=6.63 \mathrm{pW} \mathrm{m}^{-2}$
b)
i) Power received $=\mathrm{A}_{\text {eff }} \times$ peak power intensity $=19.9 \mathrm{pW}$
ii) Perfect matching: all power received goes to the power electronics (neglecting re-emission).

Therefore $19.9 \mathrm{pW}=0.5 \mathrm{VI}=0.5 \mathrm{I}^{2} \mathrm{Z}_{0}$
Then $\mathrm{I}=\sqrt[2]{\frac{19.9 \cdot 10^{-12}}{0.5 \cdot 50}}=892.2 \mathrm{nA}$ and $\mathrm{I}_{\mathrm{rms}}=630.9 \mathrm{nA}$
c)

The signal is broadcast isotropically. Hence the power per unit area, P , at a distance r from the source is:
$\mathrm{P}=10000 /\left(4 \pi \mathrm{r}^{2}\right) \mathrm{W} / \mathrm{m}^{2}$
The receiver area is $0.03 \mathrm{~m}^{2}$, hence the power received at the antenna, $\mathrm{P}_{\mathrm{rec}}$, is:
$\mathrm{P}_{\mathrm{rec}}=\mathrm{P} \times 0.03 \mathrm{~W}=300 /\left(4 \pi \mathrm{r}^{2}\right) \mathrm{W}$
At the maximum distance, $\mathrm{r}_{\text {max }}, \mathrm{P}_{\mathrm{rec}}=10^{-9} \mathrm{~W}$
Hence $\mathrm{r}_{\max }=\left[300 /\left(4 \pi \times 10^{-9}\right)\right]^{0.5}=154.51 \mathrm{~km}$
d)

If the receiver is placed at $85 \% \mathrm{r}_{\text {max }}$, then the power received is $(1 / 0.85)^{2}$ times the minimum required level

If the receiver is inclined at an angle θ to the optimum angle for picking up the signal, then the effective area is reduced by a factor $\cos (\theta)$

Hence, the antenna can be misoriented by and still pick up the minimum required signal, with
$\operatorname{Cos}\left(\theta_{\max }\right)=(0.85)^{2}$
Hence $\theta_{\max }=43.74^{0}$

