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EGT1
ENGINEERING TRIPOS PART IB

Thursday 6 June 2019 2 to 4.10

Paper 6

INFORMATION ENGINEERING

Answer not more than four questions.

Answer not more than two questions from each section.

All questions carry the same number of marks.

The approximate number of marks allocated to each part of a question is indicated
in the right margin.

Answers to questions in each section should be tied together and handed in
separately.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book
Supplementary page: graph template for Question 1 (two copies)

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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SECTION A

Answer not more than two questions from this section.

1 (a) The required transfer functions are

• θ̄(s) = G1(s)θ̄r (s) with G1(s) =
kp AB

αβs2 + (α + β)s + kp AB + 1

• ē(s) = G2(s)θ̄r (s) with G2(s) =
αβs2 + (α + β)s + 1

αβs2 + (α + β)s + kp AB + 1
[6]

(b) (i) The denominator of the closed-loop TF can be identified to s2 + 2ζωns + ω2
n

with natural frequency ωn =

√
kp AB+1
αβ ≈ 3.16 rad/s, and damping coefficient

ζ =
α+β

2ωnαβ
≈ 0.16. The corresponding step response (e.g. databook) is strongly

oscillatory:
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(ii) The Bode diagram is shown in the figure below. Asymptotes suffice for
determining the phase margin to a reasonable degree of approximation. The phase
margin (red arrow) is small, less than 19 degrees, predicting oscillations in the step
response.
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(c) (i) The steady state error for a step change in reference temperature is equal
to G2(0) = 1

1+kp AB =
1

1+1000kp
. This must be less than 0.002, giving kp ≥

0.998
20 = 0.499 ≈ 0.5. However, for this value of kp, the phase margin is barely

25 degrees, much below the 40 degrees required. It is easy to see, by looking at
the Bode diagram, that the phase margin is only going to get worse (smaller) as
kp increases. Therefore, these two criteria cannot be simultaneously satisfied by a
simple proportional controller.
Another (equally valid) answer is to look for the value of kp that achieves the required
phase margin of 40 degrees, and to note that the resulting steady state error is well
above the required 0.2%. [4]

(ii) From the Bode diagram, it is easy to see that provided kd is large enough, (i.e.
the cutoff frequency 1/kd is small enough), the phase lag of the open loop will never
exceed 90 degrees. Then one does not even have to worry about the changes in gain.
For example, any kd above 1 will work. (A more detailed graphical exploration
gives the refined condition kd > 0.06, but this is beyond the answer required from
student). [4]
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2 (a) a = G3 (e.g. 270 asymptotic phase for large s, characteristic of a 3rd order
system); b = G4 (poorly damped 2nd order system); c = G5 (well-damped 2nd order
system); d = G2 (semi-circle characteristic of first-order system; to differentiate from
similar-looking (e), note that the phase is more negative for the same frequency 1 rad/s, so
the cutoff frequency must be smaller); e = G1. [8]

(b) This is a standard negative feedback configuration: [3]

Σ K(s) planterror+reference output

−

(c) The identity line Re = Im (phase lag of 135 degrees) intersects the Nyquist diagram
of the open loop (with kp = 1.2) at a distance roughly 0.6

√
2 from the origin. For the

phase margin to be 45 degrees (phase lag of 135 degrees), this distance ought to be 1.
Therefore, the gain kp = 1.2 should be multiplied by 1/(0.6

√
2), which gives a maximum

gain of
√

2. [5]

(d) The amplitude of the steady-state response to an output disturbance is given by the
modulus of the sensitivity function, 1

|1+L(s)| . The denominator is the distance between
the Nyquist diagram at the relevant frequency (ω = 1 rad/s in this case) and the −1
point on the real axis. Given the information provided in Fig. 3, the best we can do is
|1+ L(0.9 j)|−1 < |1+ L( j)|−1 < |1+ L(1.25 j)|−1; estimating the corresponding distances
on the diagram, we conclude that the steady state output amplitude is somewhere between
1.22 and 1.56. [5]

(e) Noting that the outermost circle in Fig. 3 has radius≈ 1.4, a gain kp = 6/7 = 1.2/1.4
would shrink the Nyquist curve so that this outermost circle becomes the circle of radius 1
– and therefore for kp = 6/7 we have |L(0.7 j)| = 1. The effect of a time delay τ (Laplace
transform e−τs) is to rotate the Nyquist diagram τω radians clockwise. To reach instability,
the diagram must be rotated ever so slightly more than necessary to intersect the -1 point
on the real axis, i.e. enough to encircle this point (cf. Nyquist stability criterion). Looking
at the phase lag at ω = 0.7 rad/s, which is roughly −2.18 radians, we conclude that the
closed loop becomes unstable when 0.7τ = (π − 2.18) = 0.96 radians, that is τ = 1.37 s. [5]
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3 (a) These are simple, but coupled, first order systems:

τ
dxE
dt
= (α − 1)xE(t) − βxI(t) + u(t)

τ
dxI
dt
= αxE(t) − (1 + β)xI(t)

[5]

(b) Here, the inhibitory feedback loop is ignored.

(i) The transfer function of the closed excitatory loop is G(s) = 1
(1−α)+τs . There

is a single real pole at (α− 1)/τ; for stability, we require this pole to be negative, i.e.
α < 1. [3]

(ii) The closed excitatory feedback loop is a first order system, and so the
step response is a simple exponential ramp to the steady state value given by
G(0) = 1/(1 − α) = 10 with time constant equal to the negative inverse of the
pole, i.e. τ/(1 − α) = 10τ = 200 ms:

0

5
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≈ 3 τ
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= 600 ms

95%

xP(t)

time (ms)

For an exponential ramp, it takes about three time constants, i.e. 600 ms, to reach
95% of the asymptotic (steady-state) value. [4]

(c) The closed-loop transfer function is now

x̄E(s) =
1 + α + τs
(1 + τs)2

ū(s)

which has a repeated pole s = −1/τ. Therefore, the closed loop is now stable irrespective
of the value of α. [5]

(d) The new steady state gain is obtained by evaluating the new TF at s = 0; it is equal
to α + 1 = 10. The timescale on which the closed-loop system reaches its steady-state
value in response to an input step is directly related to the pole of the closed-loop TF –
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here, this (repeated) pole is s = −1/τ. Thus, it will take approximately 60 ms to reach
95% of the step response. This is 10 times faster than in (a) where the negative feedback
loop had been ignored. [4]

(e) The inhibitory feedback loop allows the system to amplify its input without slowing
down. In isolation, excitatory feedback can lead to large steady-state gains (here, 10 for
α = 0.9), but i) there is a need for fine-tuning, as the system approaches instability, and
ii) responses inevitably become much slower than the intrinsic time constant τ of the
neuron group. In contrast, the full excitatory- inhibitory loop can achieve similarly high
steady-state gain of 10 without slowing. [3]
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SECTION B

Answer not more than two questions from this section.

4 (a) By using the definition of the inverse Fourier transform of f (x), we obtain

f (x) =
1

2π

∫ ∞
−∞

F(ω)e jωx dω

f (−ω′) =
1

2π

∫ ∞
−∞

F(x′)e− j x′ω′ dx′

2π f (−ω′) =
∫ ∞
−∞

F(x′)e− j x′ω′ dx′ ,

where in the second equation above we have replaced x with −ω′ and ω with x′. The last
equation shows that the Fourier transform of F(x) is 2π f (−ω).

(b) We proceed as

Ga(ω) =

∫ ∞
−∞

ga(x)e− jωx dx =

[
e−( jω+a)x

− jω − a

] x=∞

x=0
−

[
e(a− jω)x

a − jω

] x=0

x=−∞

=
1

jω + a
−

1
a − jω

= −
2 jω

a2 + ω2 .

(c) By using the duality property we have

F {2/( j x)} = 2πsign(−ω) .

Therefore, H(ω) = jπsign(−ω).

(d) (i) By the definition of Z(ω), we have that

Z(ω − τ) =
∫ ∞
−∞

z(x)e− j(w−τ)x dx =
∫ ∞
−∞

e jτx z(x)e− jwx dw .

Therefore, Z(ω − τ) is the Fourier transform of e jτx z(x).

(ii) The convolution of Z(ω) and Y (ω) is
∫ ∞
−∞

Z(ω− τ)Y (τ) dτ. We now compute
the inverse Fourier transform, n(x), of this function:

n(x) =
1

2π

∫ ∞
−∞

[∫ ∞
−∞

Z(ω − τ)e jwx dω
]

Y (τ) dτ

=

∫ ∞
−∞

e jτx z(x)Y (τ) dτ

= 2πz(x)y(x).
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(e) We can use the solution to part (c) (ii) with z(x) = 1/x, Z(ω) = jπsign(−ω),
y(x) = sinc(x) and Y (ω) = πI[−1 ≥ ω ≥ 1]. The required function M(ω) is then

M(ω) =
1

2π

∫ ∞
−∞

Z(ω − τ)Y (τ) dτ =
1

2π

∫ ∞
−∞

jπsign(τ − ω)πI[−1 ≥ τ ≥ 1] dτ

=
jπ
2

∫ 1

−1
sign(τ − ω) dτ =


jπ ω < −1
− jπω −1 ≤ ω ≤ 1
− jπ ω > 1

.
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5 (a) The frequency shift theorem says that, given a function f (t) whose Fourier
transform is F(ω), the Fourier transform of f (t)e jnω0t is equal to F(ω−nω0). Substituting
this into the representation for xs(t) results in Xs(ω) =

1
T

∑∞
n=−∞ F(ω − nω0).

(b) We have that

Xk =
N−1∑
n=0

xne− j kn2π/N for 0 ≥ k ≥ N − 1 .

and

XN−k =
N−1∑
n=0

xne− j(N−k)n2π/N =
N−1∑
n=0

xne j kn2π/N e− jn2π

=

N−1∑
n=0

xne j kn2π/N =
N−1∑
n=0

[
xne− j kn2π/N

]?
=

[N−1∑
n=0

xne− j kn2π/N
]?
= [Xk ]

? ,

for k = 0,1, . . . ,N − 1.

(c) (i) The quantisation levels of the uniform quantiser are given by {±0.875, ±0.625,
±0.375,±0.125}. Let us denote by e(0.2k) the quantisation error for sample x(0.2k),
for k = 0,1,2, . . ..

By symmetry, the mean-sq quantisation error is

MSE = (e(0)2 + 2e(0.8A)2 + 2e(0.6A)2 + 2e(0.4A)2 + 2e(0.8)2 + e(A)2)/10 .

With A = 1

MSE = ((0.125)2 + 2(0.075)2 + 2(0.025)2+

2(0.025)2 + 2(0.075)2 + (1 − 0.875)2)/10 = 5.625 · 10−3 .
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(ii) If A = 0.1, |x(t)| ≤ 0.1, therefore, the positive values of x(t) are quantised to
the level +0.125, and the negative values are all quantised to −0.125. The MSE is

MSE = (0.125)2 + 2(0.08 − 0.125)2 + 2(0.06 − 0.125)2 + 2(0.04 − 0.125)2+

2(0.02 − 0.125)2 + (0.1 − 0.125)2)/10 = 0.006525 .

(iii) Signal power:
∫ 1
0 A2t2 dt = A2/3. SNR for A = 1: 10 log10(1/3/(5.625 ·

10−3)) = 17.7 dB and for A = 0.1: 10 log10(0.01/3 × 1/0.006525) = −2.92 dB,
which is bad. To obtain good SNR at both high and low amplitues, one can use
non-uniformly spaced quantisation levels. For example, a δ-level quantiser with
levels { ±0.7,±0.4,±0.2,±0.05}.
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6 (a) Rate = 2 bits/T sec = 2 × 105bits/s

(b) ∫
p(t)2 dt =

3
T
× 2

∫ T/2

0

(
1 −

t
T/2

)2
dt =

6
T
×

T
2

∫ 1

0
u2du = 1 .

Therefore, p(t) has unit energy.

(c) The received signal y(t) = x(t) + u(t),

y(t) =
∑

k
xk p(t − kT) + n(t) , (n(t) is the noise waveform) .

The filter output is

γ(t) = y(t) ∗ p(−t) =
∑

k
xk (p(t − kT) ∗ p(−t)) + n(t) ∗ p(−t)

=
∑

k
xk

∫ ∞
−∞

p(u − kT)p(u − t) du +
∫

n(u)p(u − t)du .

If there is no noise

γ(mT) =
∑

k
xk

∫
p(u − kT)p(u − mT) du .

Now, when k , m, p(u − kT) and p(u − mT) have no overlap:

When k = m,∫
p(u − mT)2 du =

∫
p(u)2 du = 1⇒ γ(mT) = xn +

∑
k,m

xk × 0 .
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(d) The optimum decision rule is

ŷm =


3A if ym ≥ 2A
A if Θ ≤ ym < 2A
−A if −2A < ym < Θ

−3A if ym ≤ −2A

.

(e) p(x̂ , x |x = 3A) = p(3A + N < 2A|x = 3A) = p(N < −A|x = 3A) = p(N <

−A) = Q(A/σ). p(x̂ , x |x = A) = p({A + N > 2A} ∪ {A + N < 0}) = p({N >

A} ∪ {N < −A}) = 2Q(A/σ). By symmetry, p(x̂ , x |x = −3A) = p(x̂ , x |x = 3A) and
p(x̂ , x |x = A) = p(x̂ , x |x = −A). Thereore, the overall proability of detection error is
pe = 1/4(Q(A/σ)+ 2Q(A/σ)+ 2Q(A/σ)+Q(A/σ)) = 3/2Q(A/σ). The average energy
per symbol Es is

Es =
(3A)2 + A2 + (−A)2 + (−3A)2

4
=

20A2

4
= 5A2 . (1)

Es = Eb log2 4 (each symbol carries 2 bits)⇒ Eb = 5A2/2⇒ A =
√

2Eb/5. Therefore,
pe = 3/2Q(

√
2Eb/(5σ2)).

(f) p(t) is the convolution of a rectangular function with itself: If q(t) takes value√
2/T for 0 ≥ t ≥ T/2 and zero otherwise, then p(t) =

√
3/Tq(t) ∗ q(t). Therefore,

p( f ) =
√

3/T(Q( f ))2 ⇒ |p( f )|2 = 3/T |Q( f )|4. Then, |Q( f )| =
√

T/2|sinc(π f T/2)| ⇒
|p( f )|2 = 3T/4sinc4(π f T/2) and Sx( f ) = Es/T |p( f )|2 = 15A2/4sinc4(π f T/2) ≈ 1/ f 4

END OF PAPER

Numerical Answers

1b(ii) Small phase margin just under 19 degrees.
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1c(ii) Any kd > 0.06 works.

2a a = G3, b = G4, c = G5, d = G2, e = G1.

2c Maximum kp is
√

2.

2d Lower bound: 1.22; upper bound: 1.56.

2e Maximum delay τ = 1.37s.

3b(i) Approximately 600 ms.

3d(i) Approximately 60 ms.

5c(i) MSE = 5.625 · 10−3.

5c(ii) MSE = 6.525 · 10−3.

5c(iii) Signal power: A2/3. SNR for A = 1: 17.7 dB. SNR for A = 0.1: −2.92 dB.

6a 2 · 105 bits/s.

6e Average energy per symbol: Es = 5A2, then pe = 3/2Q(
√

2Eb/(5σ2)).
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