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ENGINEERING TRIPOS PART IB

Thursday 10 June 2021 11:00 to 13:10

Paper 6

INFORMATION ENGINEERING

This is an open-book exam.

Answer not more than four questions.

Answer not more than two questions from each section.

All questions carry the same number of marks.

The approximate number of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet and at the top of
each subsequent answer sheet.

STATIONERY REQUIREMENTS
Write on single-sided paper.

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
You have access to the Engineering Data Book, online or as your hard copy.

10 minutes reading time is allowed for this paper at the start of
the exam.
The time taken for scanning/uploading answers is 15 minutes.

Your script is to be uploaded as a single consolidated pdf
containing all answers.
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SECTION A

Answer not more than two questions from this section.

1 (a) (i) 0 = �3, 1 = �1, 2 = �5, 3 = �2, 4 = �4. [4]

(ii) 5 = �1, 6 = �3, ℎ = �4, 8 = �5, : = �2. [4]

(b) In the Laplace domain, Ḡ(B) = �4(B)D̄(B) implies (100B2 + 101B + 1)Ḡ(B) = [BD̄(B).
Using basic properties of the Laplace transform, e.g. that BĪ(B) is the Laplace transform
of 3I

3C
, we can express this relationship in the time domain as the following second-order

linear ordinary differential equation:

100
32G

3C2
+ 101

3G

3C
+ G = [ 3D

3C
.

[4]

(c) (i) The full Bode diagram of the return ratio is shown in Fig. 2. [5]

(ii) To compute the phase margin, we identify the angular frequency at which the
gain of the return ratio is 1 (0 dB), and look up the corresponding phase. The phase
margin is the difference from this phase to -180 degrees. Here, the phase margin is
slightly above 11 degrees – see red annotations in Fig. 2. [4]

(iii) To find the value of :p that achieves a phase margin of 45 degrees, we identify
the frequency at which the phase is −180 + 45 = −135 degrees. For this phase, the
gain of the return ratio with :p = 1 is roughly 14 (23 dB) – see blue annotations in
Fig. 2. Therefore, we would need a :p of 1/14 ≈ 0.07 for the phase margin to be 45
degrees. [4]
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2 (a) Since the diagram approaches the origin from the left at large frequencies (i.e.
with a phase approaching −180 degrees), � (B) has at least two poles (each contributing a
−90-degree phase loss). If there was more poles, they would need to be compensated by
zeros (otherwise the phase would be even lower at high frequencies), but since we are told
� (B) has no zeros, we conclude it has only two poles. [3]

(b) In closed loop, we have 4̄(B) = 1
1 +  (B)� (B) Ḡ(B). [3]

(c) From the diagram, � (0) = 1. Therefore the steady state error is (1 + :p� (0))−1 =

(1 + :p)−1. For this to be 0.02, we need :p = 49 (50 would be an acceptable answer). [5]

(d) To obtain the Nyquist diagram of the return ratio for :p = 49, we would need to
scale that of 30� (B) by 49/30 ≈ 1.63. Thus, in order to find the requested phase margin,
we need to look for the intersection of the Nyquist diagram of 30� (B) with the circle
of radius 30/49 ≈ 0.61. The phase margin is the angle made by this point with the
(negative)horizontal, and is about 16 degrees here. [5]

(e) (i) The steady state error in step response is zero, because of the presence of an
integrator in the loop (the 1/B term in the controller). [4]

(ii) For small l, the return ratio is approximately

 ( 9l)� ( 9l) ≈ (1 − 20 9l) ( 9l + U)
9l

≈ −1
l
( 9 + 20l) ( 9l + U)

≈ −1
l
(20Ul − l + 9 (U + 20l2))

≈ −(20U − 1) + 9 [. . .]

We are told that the Nyquist diagram of  (B)� (B) asymptotes onto the y-axis for
small l, meaning that the the real part must be zero. Thus, U = 1/20. [5]
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3 (a) Applying the Laplace transform on both sides of Eq.1, we obtain

(�B2 + 2B + :)\̄ (B) − :D̄(B) = ḡ(B)

For the transfer function from D we take g = 0, thus

\̄ (B) = � (B) = :

B2 + 2B + :
D̄(B) .

For stability, poles must have negative real part. From the transfer function, poles are
1
2

(
−2 ±

√
22 − 4:

)
. Take 2 > 0 and consider the case 22−4: ≥ 0. Since

√
22 − 4: <

√
22

for : > 0, it follows that −2 ±
√
22 − 4: < 0, which guarantees that poles have negative

real part. Consider now the case 22−4: < 0. This gives complex conjugated poles whose
real part is −2. [3]

(b) Given the open-loop transfer function \̄ (B) = � (B) = 4
B2 + 4B + 4

D̄(B) and the input

D̄(B) = 1
B , the step response reads

\̄ (B) = 4
B3 + 4B2 + 4B

=
�

B
+ �

(B + 2)2
+ �

B + 2

where � = [B\̄ (B)]B=0 = � (0) = 1, � = [(B + 2)2\̄ (B)]B=−2 = 4
−2 = −2, and

� + � = limB→∞ B\̄ (B) = limB→∞ 4
B2+4B+4 = 0, thus � = −1. By Laplace anti-transform

\ (C) = 1 − 2C4−2C − 4−2C for C ≥ 0 .

[4]

(c) Note that � (B) = 4
B2 + 4B + 4

=
1

B2
4 + B + 1

=
1

B2

l2
=

+ 2Z
l=
B + 1

for l= = 2 and Z = 1.

So, the step response can be read in Section 4.4. of the Mechanics handbook.
For generic : , l= =

√
: and 2Z√

:
= 4
:
, that is, Z = 1

2
√
:
. Thus, : > 4 makes the response

less damped / more oscillatory. The frequency of oscillations also increases. Likewise,
: < 4 makes the response more damped / slower. [4]

(d) (i) Below is a block diagram of the closed loop:

:p + :dB
∑

:
∑ 1

B2 + 2B + :
4̄(B) D̄(B)

+

ḡ(B)

+
\̄ (B)

−

\̄d(B)
+
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[2]

(ii) Using the return ratio ! (B) = :
:p + :dB
B2 + 2B + :

, the sensitivity function1 reads

((B) = 1
1 + ! (B) =

B2 + 2B + :
B2 + (2 + ::d)B + : (1 + :p)

=
B2 + 4B + 4

B2 + 4(1 + :d)B + 404
.

Therefore, the denominator of any closed loop transfer function is

B2 + 4(1 + :d)B + 404 = B2 + 2Zl=B + l2
=

and we want to find :3 to satisfy Z = 1. Thus, l= =
√

404 ' 20.1 and
2Zl= = 4(1 + :d). From the latter, setting the damping ratio Z = 1, one gets
2
√

404 = 4(1 + :d), that is, :d =

√
404
2 − 1 ' 9.05. [4]

(iii) From the block diagram, the transfer function from ḡ(B) to \̄ (B) reads

)g→\ (B) =
1

B2+4B+4

1 + 4(:p+:dB)
B2+4B+4

=
1

B2 + 4(1 + :d)B + 4(1 + :p)
=

1
B2 + 40.2B + 404

.

Thus, )g→\ (0) = 1
404 ≤ 0.0025 < 0.01, as required. [4]

(e) For g = −W ¤\ + gext, the denominator of any closed loop transfer function becomes

B2 + (4 + W + 4:d)B + 404

so the damping ratio increases for W > 0, which induces slower transients. The steady
state to step inputs does not change. [4]

1Any closed-loop transfer function could be used.
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SECTION B

Answer not more than two questions from this section.

4 (a) From the definition of the inverse Fourier transform We know that

5 (C) = 1
2c

∫ ∞

−∞

20
02 + l2 4

9lC 3l .

Substituting UC for C, we obtain

5 (UC) = 1
2c

∫ ∞

−∞

20
02 + l2 4

9lUC 3l .

We then substitute l′ = Ul and 3l = (1/U)3l′, resulting in

5 (UC) = 1
2c

∫ ∞

−∞

1
|U |

20
02 + (l′)2/U2 4

9l′C 3l′ .

Therefore, the Fourier transform of 5 (UC) is then 20/(|U |02+l2/|U |), where the abosolute
value in U has been introduced to account for the fact that the integration limits get swapped
around when U < 0. [4]

(b) The convolution theorem says that if ℎ(C) =
∫ ∞
−∞ 5 (g)6(C − g) 3g, then the Fourier

transform � (l) of ℎ(C) satisfies � (l) = � (l)� (l) where � (l) and � (l) are the
Fourier transforms of 5 (C) and 6(C), respectively. Therefore, we have that / (l) = . (l)2,
where . (l) is the Fourier transform of the rectangular pulse H(C). In particular,
. (l) = sinc(l/2), so that / (l) = sinc2(l/2). [4]

(c) The function G(C) can be written as G(C) = 6(C) + ℎ(C) where

6(C) =
{

0.5 −) ≤ G ≤ )
0 otherwise

, ℎ(C) =


G0.5/) + 0.5 −) ≤ G < 0
0.5 − G0.5/) 0 ≤ G ≤ )
0 otherwise

.

The function 6(C) is a rectangular pulse centered at the origin and of width 2) and
height 0.5. The Fourier transform � (l) of 6(C) is then )sinc(l)). The function ℎ(C)
is a triangular pulse centered at the origin and of height 0.5 and width 2) . That is,
ℎ(C) = 0.5I(C/)), where I(C) is the function from part (b). Using the result from part (a),
we have that the Fourier transformof ℎ(C) is then� (l) = 0.5)/ (l)) = 0.5)sinc2(l)/2).
The Fourier transform of G(C) is then given by - (l) = � (l)+� (l) = 0.5)sinc2(l)/2)+
)sinc(l)). [4]
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(d) (i) By linearity, the Fourier transform of 4−2|C |/4 is 1/(4 + l2). By duality, the
Fourier transform of 6(C) = 1/(4 + C2) is � (l) = c4−2|l |/2. [4]

(ii) We have that sin(2C) = (42C − 4−2C)/(28) and, by using the frequency
shift theorem, we have that the Fourier transform of <(C) = sin(2C)/(4 + C2) is
" (l) = (� (l − 2) − � (l + 2))/(28) = 8c4−2|l+2|/4 − 8c4−2|l−2|/4. [3]

(e) Using Parseval’s theorem, we have that∫ ∞

−∞
|B(C) |2 3C = 1

2c

∫ ∞

−∞
|((l) |2 3l ,

where ((l) is the Fourier transform of B(C). We have that B(C) is the product of cos(C)
and sinc(C), whose Fourier transforms are, respectively, c[X(l + 1) + X(l − 1)] and
cI[−1 ≤ l ≤ 1], where I[G] is an indicator function that takes value 1 if G is true and 0
otherwise. Therefore, we have that

((l) = c

2

∫ ∞

−∞
I[−1 ≤ l − g ≤ 1] {X(g + 1) + X(g − 1)} 3g

=
c

2
{I[−1 ≤ l − 1 ≤ 1] + I[−1 ≤ l + 1 ≤ 1]}

=
c

2
{I[0 ≤ l ≤ 2] + I[−2 ≤ l ≤ 0]} .

The energy of B(C) is then∫ ∞

−∞
|B(C) |2 3C = 1

2c

∫ ∞

−∞
| c
2
{I[0 ≤ l ≤ 2] + I[−2 ≤ l ≤ 0]} |2 3l =

c

2
.

[6]
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5 (a) (i) The sampled signal is given by

G? (C) =
1
)

∞∑
==−∞

G(C)4 9=2cC/) .

The Fourier transform of the sampled signal, denoted by -? (l), can then be
calculated by using the frequency shift theorem and by using additivity. In particular,

-? (l) =
1
)

∞∑
==−∞

- (l − =2c/)) = 1
)

∞∑
==−∞

4−2|l−=2c/) | .

We will not be able to reconstruct the original signal from the sampled one because
there is overlap between the periodic repetitions of - (l) in the spectrum of the
sampled signal. [3]

(ii) The energy of the original signal is

� =
2

2c

∫ ∞

0
- (l)2 3l =

1
2c
(−24−4l/4) |∞0 =

1
4c

.

If the lowpass filter has cutoff frequency l<0G , the energy of the filtered signal is

�filtered =
2

2c

∫ l<0G

0
- (l)2 3l =

1
2c
(−24−4l/4) |l<0G0 =

1
4c

(
1 − 4−4l<0G

)
.

The value ofl<0G that makes the filtered signal keep 80% of the energy is, therefore,

0.4 =
1
2

(
1 − 4−4l<0G

)
→ l<0G = − log(0.02)/4 ≈ 0.402 .

[4]

(iii) The spectrum of the filtered sampled signal is equal to the spectrum of the
original filtered signal added many times to itself, but each time displaced by an
amount equal to amultiple of 2c/) . Themaximum frequency content of the sampled
signal is l<0G = 0.402. Overlap between the frequency spectrums will not occur
when 2c/) = 2l<0G . Therefore, we should choose ) = c/0.402 ≈ 7.81. [3]

(b) (i) From parts (a)(i) and (a)(ii) we know that the Fourier transform of the sampled
signal repeats afterl > 2c/) . The discrete Fourier transform evaluates the spectrum
at # evenly spaced values in the interval [0, (# − 1)2c/(#))]. These are given by
l8 = (8 − 1)2c/()#) for 8 = 0, . . . , # − 1. When ) = 50 seconds and # = 4, we
obtain l0 = 0 rad/s, l1 = 0.031 rad/s, l2 = 0.063 rad/s and l3 = 0.094 rad/s. [3]

(ii) The inverse DFT is given by

G= =
1
4

3∑
<=0

-<4
92c=</4 =

1
2
9 4 92c=/4 − 1

2
9 4 92c=3/4 .
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We, therefore, obtain

G0 =
1
2
9 4 92c0/4 − 1

2
9 4 92c0/4 = 0 ,

G1 =
1
2
9 4 92c1/4 − 1

2
9 4 92c3/4 = −0.5 − 0.5 = −1 ,

G2 =
1
2
9 4 92c2/4 − 1

2
9 4 92c6/4 = −0.5 9 + 0.5 9 = 0 ,

G3 =
1
2
9 4 92c3/4 − 1

2
9 4 92c9/4 = 0.5 + 0.5 = 1 .

[5]

(c) The power of the signal G(C) is given by

signal power = lim
)→∞

1
)

∫ )/2

−)/2
(0.5G)2 3G = 0.52 1

2

∫ 2

0
G2 3G = 0.52 1

2
23/3 = 1/3 . (1)

The measured signal values at C = {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2} are G =

{0.000, 0.125, 0.250, 0.375, 0.500, 0.625, 0.750, 0.875, 1}. The quantised levels are
{−0.833,−0.5,−0.166, 0.166, 0.5, 0.833}. The average MSE of the quantised signal is
then

MSE = ((0.166)2 + 2(0.125 − 0.166)2 + 2(0.250 − 0.166)2 + 2(0.375 − 0.5)2+
2(0.5 − 0.5)2 + 2(0.625 − 0.5)2 + 2(0.750 − 0.833)2+
2(0.875 − 0.833)2 + (1 − 0.833)2)/16

= 0.0095 .

The SNR is then

SNR =
0.333

0.0164
= 15.431 dB .

[7]
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6 (a) (i) Themodulation index ismaxC |B(C) | divided by 15. Since themodulation
index has to be 0.5 and 5 (C) is at most ±1, we obtain 0 = 0.5 × 15 = 7.5. The
radio channel is centered at 900kHz. Therefore, we have that l2 = 900, 000 × 2c =

5, 654, 867 rad/s. [4]

(ii) The Fourier transform of cos(l2C) is c[X(l −l2) + X(l +l2)]. The Fourier
transform of the product is the Fourier transform of the convolution divided by 2c.
This results in

((l) = 15c[X(l − l2) + X(l + l2)] +
0

2
[� (l − l2) + � (l + l2)] .

[4]

(iii) We need a bandwidth of 2 × 5kHz + ×3kHz = 16kHz (13kHz if students
assume that the bandwidth gap is shared between consecutive channels). [2]

(iv) B(C) is amplitude modulation (AM) and D(C) is double side-band suppressed
carrier (DSB-SC). D(C) has smaller power (as we do not transmit the carrier) but
needsmore complex circuitry at the receiver to demodulate. B(C) can be demodulated
using a simple envelope detector. [4]

(b) The transmission rate in bits per second is 1/10−4 = 1000. [2]

(c) (i) Note that ?(-: = �) = 2/3, ?(-: = �) = 1/3 and ?(.: |-: ) = N(-: , |f2).
The decision threshold \ satisfies

?(-: = �)?(.: = \ |-: = �) = ?(-: = −�)?(.: = \ |-: = −�)

2/3 × 1
√
f2

exp

{
− (\ − �)

2

2f2

}
= 1/3 × 1

√
f2

exp

{
− (\ + �)

2

2f2

}
,

which results in

\ = −0.5f2 log(2)/� .

[5]

(ii) The probability of error is the probability of receiving � and decoding −�
plus the probability of receiving −� and decoding �. That is,

?(Error) = ?(-: = �)?(. < \) + ?(-: = −�)?(. > \)
= 2/3?(� + #: < \) + 1/3?(−� + #: > \)
= 2/3?(�/f + #:/f < \/f) + 1/3?(−�/f + #:/f > \/f)
= 2/3?(#:/f < (\ − �)/f) + 1/3?(#:/f > (\ + �)/f)
= 2/3[1 −&((\ − �)/f)] + 1/3&((\ + �)/f) .
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[4]

END OF PAPER
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