
2P6 Solutions 2023

SECTION A

1. (a) Taking i to be the current flowing from the amplifier output through C2 and using
a ‘virtual-earth’ assumption we find

i = C2v̇0

i = − vi
R1

− C1v̇i.

Eliminating i and taking Laplace transforms with zero initial condition gives

C2sv̄0(s) = −
(

1

R1

+ C1s

)
v̄i(s)

from which the expression for K(s) follows. [6]

(b) First note that

L(s) =
k

s(Ts+ 1)2
.

(i) ω1 = T−1 gives ∠L(jω1) = −π rad by inspection. [3]

(ii) ∠L(jω2) = −5π/6 rad requires tan−1(ω2T ) = π
6

hence

ω2 =
1

T
tan

π

6
=

1√
3T

.

[4]

(iii) The Nyquist diagram of L(s) will be always to the right of the −1 point for
closed-loop stability if we choose k such that |L(jω2)| = 1, which would also
give the required phase margin of 60o. For this to hold:

k = ω2

∣∣∣∣(j 1√
3

+ 1

)∣∣∣∣2 =
4

3
√

3T
.

[4]

(iv) The gain margin equals 20 log10 |L(jω1)|−1 and we note that |L(jω1)| = k/(2ω1).
Hence

GM =
2ω1

k
=

3
√

3

2
= 8.29 dB (3 s.f.)

[4]

(v) The time delay should produce π/6 rad of phase lag at ω2 to make the system
marginally stable, i.e. ω2D = π/6 which means that

D

T
=

π

2
√

3
= 0.907 (3 s.f.)

[4]
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2. (a) A straight-line asymptote at low frequencies has slope -20dB/dec and passes through
ω = 0.1 suggesting a = 0.1. The slope flattens with a break point at 0.8 rad/sec
(where the phase is −45◦) which suggests T−13 = 0.8. The sharp peak at 2 rad/sec
suggests T−12 = 2 and the notch at 10 rad/sec suggests T−11 = 10. Without any
further poles or zeros the magnitude would likely flatten as shown in red, but it
starts to roll off fairly quickly suggesting another pole, i.e. T−14 = 20. Hence the
values:

a = 0.1, T1 = 0.1, T2 = 0.5, T3 = 12.5, T4 = 0.05.

A useful check is that for large s, G(s) ∼ aT 2
1 T3T

−2
2 T−14 s−1 = s−1 which agrees with

the graph.

[6]

(b) (i) The system is open-loop stable and its phase is always above −180◦ so the
Nyquist diagram remains below the negative real axis, which means that the
Nyquist stability criterion is satisfied for any k. [3]

(ii) The phase ofG(jω) equals−135◦ at two frequencies: 2.2 rad/sec and 9.2 rad/sec.
The gain at these frequencies is 12dB = 3.98 and -33dB = 0.0224. Hence the
two values of k are 0.251 and 44.7. [4]
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(c) (i)

[5]

(ii) New gain crossover frequency ≈ 4.5 rad/sec with phase ≈ −125◦ giving a phase
margin of 55◦. [Exact values: crossover = 4.53 rad, phase = −121.5◦, PM
= 58.5◦.] [4]

(iii) The model being used suggests that the system will be stable with good phase
margin for much increased values of loop gain. Caution is needed, however, since
this is a low-order model. If there were unmodelled higher order flexible modes
these could give a sharp lagging effect on the phase characteristic which might
lead to instability with high gain feedback. Attention also needs to be paid to
any other phase lags that could arise, e.g. due to time delays. [3]
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3. (a) Taking Laplace transforms and eliminating q̄ gives the equations:

k1ū = Asȳ + (k2 + k3s)p̄, (1)

ms2ȳ + csȳ = Ap̄− f̄L (2)

which gives

p̄ =
1

k2 + k3s
(k1ū− Asȳ),

sȳ =
1

ms+ c
(Ap̄− f̄L)

from which the block diagram below can be drawn. The second form shows a block
diagram without elimating q̄.

[6]

(b) From the block diagram, or directly from the equations,

Tu→v =
k1

A
(ms+c)(k3s+k2)

1 + A2

(ms+c)(k3s+k2)

=
k1A

(ms+ c)(k3s+ k2) + A2
,

TfL→v =
−1
ms+c

1 + A2

(ms+c)(k3s+k2)

=
−(k3s+ k2)

(ms+ c)(k3s+ k2) + A2
.

These systems take the form of a proportional (negative) feedback applied to the
series connection of two first-order lags. The Nyquist diagram of this series connec-
tion never crosses the negative real axis hence the system is stable. (Alternatively,
the denominator is second order with all coefficients positive hence has all its roots
in the left half plane.) [6]

(c) v(t) settles down to a constant value in either case, after the transients have died
down. Hence y(t) tends to a ramp asymptotically. [4]
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(d) The open loop transfer function from u to y looks like a positive constant times 1/s
for small frequencies, hence its Nyquist diagram intersects the negative real axis at
some finite negative value which will be to the right of the −1 point for sufficiently
small k. [4]

(e) From (1)-(2), setting s = 0 for the steady state and substituting u = −ky gives:

yss = − k2
k k1A

fL,ss

so the steady-state gain is:

− k2
k k1A

.

Alternatively, writing p(s) = s((ms+ c)(k3s+ k2) + A2) we have

ȳ = −k3s+ k2
p

f̄L +
k1A

p
ū

which gives

(1 +
k k1A

p
)ȳ = −k3s+ k2

p
f̄L

and then

ȳ = − k3s+ k2
k k1A+ p

f̄L

which gives the same value for the steady-state gain on setting s = 0. [5]
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SECTION B

4. (a)

df(t)

dt
=

d

dt

1

2π

∫
F (ω)ejωtdω =

1

2π

∫
F (ω)

d

dt
ejωtdω

=
1

2π

∫
jωF (ω)ejωtdω

Hence jωF (ω) must be the FT. [5]

(b)
df(t)

dt
= −2t/a2 exp(−t2/a2)

From the definition of F :

dF (ω)

dω
=

d

dω

∫
exp(−t2/a2) exp(−jωt)dt =

∫
exp(−t2/a2) d

dω
exp(−jωt)dt

=

∫
−jt exp(−t2/a2) exp(−jωt)dt =

∫
ja2/2

df(t)

dt
exp(−jωt)dt

= −ωa2/2F (ω)

where the last line follows from part (a).

A solution that uses the known FT of the Gaussian to verify the result gets only
partial credit. [9]

(c) Separating variables in the answer to part (b):

dF (ω)

F (ω)
= −a

2

2
ωdω∫

dF (ω)

F (ω)
=

∫
−a

2

2
ωdω

logF (ω) = −a
2

2
ω2/2 + C

F (ω) ∝ exp(−a
2

4
ω2)

as required.

A solution that verifies the solution by differentiation of the answer to get (b) gets
partial credit. [5]

(d) Find bandwidth B for 95% of energy.

Parseval shows that energy ratio is:∫ +B

−B |F (ω)2|dω∫ +∞
−∞ |F (ω)2|dω

= 0.95

Plugging in part (c)’s result with a = 1 (constant of prop. cancels top and bottom):

1√
2π

∫ +B

−B exp(−ω2/2)dω

1√
2π

∫ +∞
−∞ exp(−ω2/2)dω

= 0.95

6



But 1√
2π

∫ +∞
−∞ exp(−ω2/2)dω = 1 (standard Gaussian) so need

1√
2π

∫ +B

−B
exp(−ω2/2)dω = Φ(B)− (1− Φ(B)) = 2Φ(B)− 1 = 0.95

and hence φ(B) = 0.9525. From tables (Maths Databook 2017 p. 29) this gives
B = 1.67 rad/sec. [6]

5. (a) (i) Sketch:

Nyquist sampling theory would indicate 0 < α < 1, since half of sampling
frequency is π/T rad s−1. [6]

(ii) z(t) is the linear interpolation of the digital samples.
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Fourier transform of Γ(t) is (Info. Data book p. 1):

T sinc2(ωT/2)

Sketch of this is :

Therefore sketch of spectrum of z(t) is:

[7]

(b) (i)
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The block diagram is as shown above, with ∆ = 0 as a perfect copy of the carrier
is available. The output of the product modulator is:

v(t) = y(t) sin(2πfct) = m(t) sin2(2πfct)

=
m(t)

2
(1− cos(4πfct)).

Therefore, the signal m(t) can be recovered by applying a low-pass filter that
has constant gain 2 in the band [−W,W ]. The cut-off frequency of the filter Wc

can be a frequence slightly larger than W such that Wc � fc, say Wc = 1.2W . [6]

(ii) Now the output of the product modulator is:

v(t) = y(t) sin(2π(fc + ∆)t) = m(t) sin(2πfvt) sin(2π(fc + ∆)t)

=
m(t)

2
[cos(2π∆t) − cos(2π(2fc + ∆)t)]

where we have used the identity sin(A) sin(B) = 1
2
[cos(A−B) − cos(A+B)].

The term m(t)
2

cos(2π∆t) has Fourier transform

1

4
[M(f + ∆) +M(f −∆)],

which is non-zero in the interval [−∆ − W, ∆ + W ] since M(f) is non-zero
in [−W,W ]. Since ∆ = 0.1W , this spectrum lies within the filter passband
[−1.2W, 1.2W ]. Since the filter has gain 2, its output is m(t) cos(2π∆t). [6]

6.

h(t) = p(−t)
Filter

y(t)
r(t)

t = mT

r(mT )

(a) (i) Since there is no noise, [5]
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r(t) = x(t) ? p(−t) =

∫ ∞
−∞

x(τ)p(τ − t)dτ

=
∑
k

Xk

∫ ∞
−∞

p(τ − kT )p(τ − t)dτ

=
∑
k

Xk

∫ ∞
−∞

p(u+ t− kT )p(u) du (using u = τ − t)

=
∑
k

Xk

∫ ∞
−∞

g(t− kT ) (using the definition of g)

(ii) Taking t = mT in part (a)(i), we have r(mT ) = Xmg(0) +
∑

k 6=m g((m− k)T ).
Therefore, r(mT ) = Xm if g(0) = 1 and g((m− k)T ) = 0 for k 6= m. That is, [3]

g(0) = 1 and g(nT ) = 0 for n = ±1,±2, . . .

(iii) The pulse p(t) is a baseband pulse that should be bandlimited. We would also
like the energy of p(t) to be largely concentrated over one symbol period (in the
time domain). [3]

(b) (i) The rate of transmission is log2 8
10−6 = 3× 106 bits per second. [1]

(ii)

The decision boundaries are midway between constellation points. The overall
probability of error is [9]

Pe =
1

8

(
P (Y ≥ −6A | X = −7A) + P (Y < −6A ∪ Y ≥ −4A | X = −5A) + . . .

. . .+ P (Y < 4A ∪ Y ≥ 6A | X = 5A) + P (Y < 6A | X = 7A)
)

(3)

The first term in (3) is

P (Y ≥ −6A | X = −7A) = P (−7A+N ≥ −6A | X = −7A)

= P (N > A) = Q
(
A

σ

)
.

The second term in (3) is

P (Y < −6A ∪ Y ≥ −4A | X = −5A)

= P (−5A+N < −6A ∪ −5A+N ≥ −4A | X = −5A)

= P (N < −A ∪ N > A)

= 2P (N > A) = 2Q
(
A

σ

)
.
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By symmetry of the Gaussian pdf, the first and the last terms in (3) are equal,
and the middle six terms are all equal to one another. Therefore,

Pe =
1

8

(
2 · Q

(
A

σ

)
+ 6 · 2Q

(
A

σ

))
=

7

4
Q
(
A

σ

)
.

[11]

(iii) Using the given bound for Q(u), we have

Pe =
7

4
Q
(
A

σ

)
≤ 7

8
e−A

2/(2σ2).

As A is increased, the constellation points are spaced further apart and the
overall probability of error decreases exponentially with A2. However the average
energy used to transmit each symbol (equivalently, the average energy per bit)
also increases proportionally with A2. Indeed, the average energy per symbol is

Es =
1

8
[2 · A2 + 2 · (3A)2 + 2 · (5A)2 + 2 · (7A)2] = 21A2.

The average energy per bit is Eb = Es

log2 8
= 7A2. [4]

[Examiner’s note: Students are not expected to calculate the average energy
per symbol/bit. A correct qualitative explanation of the tradeoff suffices.]

M.C. Smith, S.J. Godsill, R. Venkataramanan
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