
IB Final Exam 2016 - Crib
Section A

Q1.
(a) Irrotational/solenoidal field:

∇ · u = 0

In polar coordinates:

−1

r

∂

∂r

(
Pr2

2

)
+

∂

∂z
(Qz) = −P +Q = 0

We can obtain the corresponding potential φ as

∇φ = u

∂φ

∂r
= ur = −Pr

2
→ φ = −Pr

2

4
+ f(z)

∂φ

∂z
= uz = Qz = Pz → f ′ = Pz → f =

Pz2

2

φ = −Pr
2

4
+
Pz2

2
+ φ0

The vector potential is given from the curl: u = ∇×A:

uz = −1

r

∂rA

∂r
= Pz → A = −Pzr

2
+ g(z)

ur =
1

r

∂rA

∂z
= −Pz

2
→ A = −Prz

2
+ h(r)

Therefore we have : A = A(r, z) = −Pzr
2

êθ.

(b) The field lines are parallel to the local velocity, and are therefore given by:

dr

ur
=
dz

uz
dr

−Pr
2

=
dz

Qz

− 2

P
ln r = − 1

Q
ln z + lnC0

r2/P zQ = C0

Note that the field lines can always be obtained, regardless of the values of P and Q.

(c) The first three integrals can be obtained by direct integration, and the fourth by using
Gauss’ Theorem:
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(i) Φ1 =
∫ ro
0 uz2πr dr = Qπr2ozo

(ii) Φ2 =
∫ zi
0 ur2πri dz = −Pri

2
2πr2i zi = −Pπr2ozo

(iii) Φ2 =
∫ ri
0 uz2πr dr = 0, since uz(r, 0) = 0.

(iv) From Gauss’ Theorem, for a volume V enclosed by surface S,
∫
S u · dS =

∫
V ∇·u dV .

Therefore, Φ1 + Φ2 + Φ3 + Φ4 = (Q− P )V , so that

Φ4 = (Q− P )V −Qπr2ozo − (−Pπr2ozo) = (Q− P )(V − πr2ozo)
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Q2.
(a)

∇×B =

∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z
yzf ′ fz fy

∣∣∣∣∣∣∣∣ = (f − f)i + (yf ′ − yf ′)j + (zf ′ − zf ′)k = 0

So that the field is conservative. A potential can be obtained from :

∂φ

∂x
= yzf ′ φ = yzf + g(y, z)

∂φ

∂y
= fz = fz +

�
�
�∂g

∂y

∂φ

∂z
= fy = fy +

�
��
∂g

∂z

Therefore, φ = yzf + C. A common mistake was to take φ = 3yzf .

(b) ∫
V
∇ ·B dV = 0∫

V
yz
d2f

dx2
dV = 0

Therefore, the requirement that the integral over the relevant volume be zero means that the
following conditions are possible:

(i)
d2f

dx2
= 0

(ii) For the given volume, x, y and z > 0, so the condition can also be satisfied if
d2f

dx2
is

anti-symmetric about the integration coordinate x.

(c)

C = ψB

∇×C = ∇ψ ×B + ψ����∇×B = 0

∇ψ ×∇φ = 0 i.e. gradients must be parallel

Ifψ = g(φ)

∇ψ =
dg

dφ
∇φ

∇ψ ×∇φ =
dg

dφ
∇φ×∇φ = 0
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The main difficulty in the final part of this question was clearly demonstrating the last
relationship.

(d) Acceptable answers in this question are either direct integration or (ideally) the recog-
nition that the integral only depends on the end points. (i)∫

C
B · dl = φ2 − φ1 = φ(1, 1, 1)− φ(−1, 1, 1) = (1)(1) sin

π

2
− (1)(1) sin

(
−π

2

)
= 2

or by direct integration∫
C
B · dl =

∫ 1

−1
yz
df

dx
dx = yz(f(1)− f(−1)) = (1)(1)

[
sin

π

2
− sin

(
−π

2

)]
= 2

The most common mistake here was a sign change, as the integral does have a direction.

(ii) For this item, direct integration is not practical, so we use the potential, or recognise
that the path does not matter for the integration:∫

C
B · dl = φ2 − φ1 = yz(f(1)− f(−1)) = (1)(1)

[
sin

π

2
− sin

(
−π

2

)]
= 2

Since a direction was not given in the statement, both values ±2 are acceptable answers. As
the original statement of the question was ambiguous whether the same f should be used as
in item (i), the answer (f(1)− f(−1)) was also deemed correct.
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Q3.

y = X(x)T (t)

∂4y

∂x4
= X(4)T

∂4y

∂t4
= XT ′′

c2X(4)T = −T ′′X

c2
X(4)

X
= −T

′′

T

Some may recognise the solutions to the two differential above for T and X as having eigen-

values corresponding to ±ω and ±iω
c

, respectively, leading to the proposed general solutions

involving sin, cos, sinh and cosh.
Alternatively, one can take the proposed solution and differentiate the terms to show that

the solution is valid, e.g.:

X(4) = k4X

T ′′ = −ω2T

which can be substituted into the relationship above to yield:

c2k4 = ω2

k =
√
ω/c

(b) We need all three derivatives of X to apply the boundary conditions:

X = [+A cos kx+B sin kx+ C cosh kx+D sinh kx]

X ′ = k [−A sin kx+B cos kx+ C sinh kx+D cosh kx]

X ′′ = k2 [−A cos kx−B sin kx+ C cosh kx+D sinh kx]

X ′′′ = k2 [−A sin kx−B sin kx+ C cosh kx+D sinh kx]

X(0) = A+ C = 0→ C = −A
X ′(0) = B +D = 0→ D = −B
X ′′(L) = k2[−A cos kL−B sin kL+ C cosh kL+D sinh kL] = 0

X ′′′(L) = k2[−A sin kL−B sin kL+ C cosh kL+D sinh kL] = 0

A

B
= −cosh kL+ cos kL

sinh kL− sin kL
= − sinh kL+ sin kL

cosh kL− cos kL

(cosh kL+ cos kL)2 − (sinh kL)2 + (sin kL)2 = 0

(cosh kL)2 + (cos kL)2 + 2(cosh kL)(cos kL)− (sinh kL)2 + (sin kL)2 = 0

2(cosh kL)(cos kL) = −2

(cosh kL)(cos kL) = −1
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Q.E.D.
The initial condition yields:

T ′(0) = ω[−P sin(ω0) +Q cos(ω0)] = 0

Q = 0

so that the full general solution is represented by:

y(x, t) = Y0 cos(ωt)[cos kx+ cosh kx+R(sin kx+ sinh kx)]

R = [
sinh kL− sin kL

cos kL+ cos kL
]

and kL satisfies

cosh kL cos kL = −1
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1B Mathematical Methods 2016: Part B

Question 4

4a

Solve the following system of linear equations using Gaussian elimination:

x1 + 3x2 − 2x3 + x4 = −1

2x1 − 2x2 + x3 − 2x4 = 1

x1 + x2 − 3x3 + x4 = 6

3x1 − x2 + 2x3 − x4 = 3

(2 marks)

Solution: First, state the equation system in matrix form:
1 3 −2 1 −1
2 −2 1 −2 1
1 1 −3 1 6
3 −1 2 −1 3

 .

Now transform the matrix into row echelon form. Many routes are possible, for instance:

• row2 ← row2 − 2× row1

• row3 ← row3 − row1

• row4 ← row4 − (row1 + row2):


1 3 −2 1 −1
0 −8 5 −4 3
0 −2 −1 0 7
0 −2 3 0 3


• row2 ← row2 − 4× row4

• row3 ← row3 − row4:


1 3 −2 1 −1
0 0 −7 −4 −9
0 0 −4 0 4
0 −2 3 0 3


• row2 ↔ row4

• row3 ← row3/4:
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
1 3 −2 1 −1
0 −2 3 0 3
0 0 −1 0 1
0 0 −7 −4 −9


• row4 ← row4 − 7× row3:


1 3 −2 1 −1
0 −2 3 0 3
0 0 −1 0 1
0 0 0 −4 −16



⇒


1 3 −2 1
0 −2 3 0
0 0 −1 0
0 0 0 −4




x1
x2
x3
x4

 =


−1

3
1

−16

 ,

which results in the following equations and their solutions:

−4x4 = −16⇒ x4 = 4

−x3 = 1⇒ x3 = −1

−2x2 + 3x3 = 3⇒ x2 = −3

x1 + 3x2 − 2x3 + x4 = −1⇒ x1 = 2

4b

Find the LU decomposition for the matrix

A =

 1 2 3
2 4 5
1 3 4

 .

(3 marks)

Solution: A does not have an LU decomposition since

∣∣∣∣ 1 2
2 4

∣∣∣∣ = 0. However, if we swap

the second and third rows in A we obtain:

Ã =

 1 2 3
1 3 4
2 4 5

 ,

with leading submatrices Ã1 = 1, Ã2 =

∣∣∣∣ 1 2
1 3

∣∣∣∣ and Ã3 = Ã. Since |Ã1| = 1, |Ã2| = 1,

|Ã3| = −1 are all nonzero, an LU decomposition now exists. Define:
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Ã =

 1 2 3
1 3 4
2 4 5

 = LU,

L =

 1 0 0
L21 1 0
L31 L32 1

 ,

U =

 U11 U12 U13

0 U22 U23

0 0 U33

 ,

 U11 U12 U13

L21U11 L21U12 + U22 L21U13 + U23

L31U11 L31U12 + L32U22 L31U13 + L32U23 + U33

 =

 1 2 3
1 3 4
2 4 5

 ,

which results in:

U11 = 1, U12 = 2, U13 = 3

L21U11 = 1⇒ L21 = 1

L21U12 + U22 = 3⇒ U22 = 1

L21U13 + U23 = 4⇒ U23 = 1

L31U11 = 2⇒ L31 = 2

L31U12 + L32U22 = 4⇒ L32 = 0

L31U13 + L32U23 + U33 = 5⇒ U33 = −1.

∴ Ã =

 1 2 3
1 3 4
2 4 5

 = LU =

 1 0 0
1 1 0
2 0 1

 1 2 3
0 1 1
0 0 −1

 .

Alternatively, with pivoting A = PLU, P =

 1 0 0
0 0 1
0 1 0

.

4c

Solve
(X−B)−1 = C,

in which

B =

(
1 3
3 9

)
and C =

(
1 2
−3 4

)
.

(4 marks)
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Solution:

(X−B) = C−1

X = C−1 + B.

Since |C| 6= 0:

C−1 =
1

|C|

(
4 −2
3 1

)
=

1

10

(
4 −2
3 1

)
X = C−1 + B

=
1

10

(
4 −2
3 1

)
+

(
1 3
3 9

)
=

(
1.4 2.8
3.3 9.1

)
.

4d

Consider the matrix

D =

 1 1 3 a
1 2 1 1
2 4 2 2

 .

Determine a basis for the null space of D and state the dimensions of the null space. (8 marks)

Solution: To find the basis vectors for the null space we solve Dx = 0. First, transform D
into row echelon form with as few variables as possible:

D̃ =

 1 1 3 a
1 2 1 1
0 0 0 0


D̃ =

 1 1 3 a
0 1 −2 1− a
0 0 0 0


D̃ =

 1 0 5 2a− 1
0 1 −2 1− a
0 0 0 0

 ,

which results in the following two equations:

x1 + 5x3 + (2a− 1)x4 = 0

x2 − 2x3 + (1− a)x4 = 0.
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We have four variables but only two equations. Define x3 = s and x4 = t:

x1 + 5s+ (2a− 1)t = 0⇒ x1 = −5s− (2a− 1)t

x2 − 2s+ (1− a)t = 0⇒ x2 = 2s− (1− a)t.

x =


x1
x2
x3
x4

 =


−5s− (2a− 1)t

2s− (1− a)t
s
t

 = s


−5
2
1
0

+ t


1− 2a
a− 1

0
1

 .

∴ a basis for the null space is


−5
2
1
0

 and


1− 2a
a− 1

0
1

. Since two vectors form the basis

for the null space, the dimensions of the null space is 2.

4e

If v is an eigenvector of an invertible matrix E, prove that v is also an eigenvector of E2 and
E−2 and state the corresponding eigenvalues. (8 marks)

Solution: Assume Ev = λv, then:

E2v = E(Ev)

= E(λv)

= λEv

= λ2v.

∴ v is an eigenvector of E2 and the eigenvalue is λ2.
Now, since E is invertible:

E2v = λ2v

⇒ λ−2v = E−2v.

∴ v is an eigenvector of E−2 and the eigenvalue is λ−2.
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Question 5

5a

Prove that the following matrix A is skew-symmetric:

A =

 0 6 −3
−6 0 −8
3 8 0

 .

(2 marks)

Solution:

AT =

 0 −6 3
6 0 8
−3 −8 0

 = −A.

5b

Find the eigenvectors of the system
Bx = λx,

in which

B =

 1 −1 2
−3 −2 3
2 −1 1

 and x =

 x
y
z

 .

(5 marks)

Solution:

B− λI =

 1− λ −1 2
−3 −2− λ 3

2 −1 1− λ


∣∣∣∣∣∣

1− λ −1 2
−3 −2− λ 3

2 −1 1− λ

∣∣∣∣∣∣ = (1− λ)

∣∣∣∣ −2− λ 3
−1 1− λ

∣∣∣∣− (−1)

∣∣∣∣ −3 3
2 1− λ

∣∣∣∣+ 2

∣∣∣∣ −3 −2− λ
2 −1

∣∣∣∣
= (1− λ)[(−2− λ)(1− λ) + 3] + [−3(1− λ)− 6] + 2[3− (−2− λ)(2)]

⇒ −λ3 + 7λ+ 6 = 0

⇒ λ1 = −2, λ2 = −1, λ3 = 3.

Solving for λ1 = −2 yields

 1
5
1

, λ2 = −1 yields

 1
12
5

 and λ3 = 3 yields

 1
0
1

.

∴ the eigenvectors are

 1
5
1

,

 1
12
5

 and

 1
0
1

.

12



5c

5c.i

Prove that the matrices CCT and CTC have the same eigenvalues, except for the eigenvalue
of 0. (6 marks)

Solution: Assume λ is a non-zero eigenvalue of CCT and v is its corresponding eigenvector.
Then (CCT )v = λv. If we premultiply both sides by CT we obtain CT (CCT )v = (CTC) ·
(CTv) = λ · (CTv).
∴ λ is an eigenvalue of CTC (and the corresponding eigenvector is CTv).

5c.ii

Let

C =

(
1 −1 1 0 −1 0
1 0 0 1 −1 1

)
.

Find all eigenvalues of CTC. (4 marks)

Solution: Since CTC is rather large and we know from the previous part of the subquestion
that CCT and CTC have the same eigenvalues, except for the eigenvalue of 0, we find all
eigenvalues for the matrix CCT instead.

CCT =

(
4 2
2 4

)
,

with the characteristic polynomial λ2−8λ+ 12. The eigenvalues of CCT are thus λ1 = 2 and
λ2 = 6. The non-zero eigenvalues of CTC are therefore λ1 = 2 and λ2 = 6 and the remaining
eigenvalues must therefore be 0 (λ3 = 0 with algebraic multiplicity 4).

5d

Let

E =

 1 2 2
1 1 3
1 −1 5

 .

Find an invertible matrix Z and a diagonal matrix D such that

Z−1EZ = D.

(8 marks)
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Solution: To diagnolise E we first find the eigenvalues of E:

|E = λI| = 0∣∣∣∣∣∣
1− λ 2 2

1 1− λ 3
1 −1 5− λ

∣∣∣∣∣∣ = (1− λ)[(1− λ)(5− λ) + 3]− 2[(5− λ)− 3] + 2[−1− (1− λ)]

= λ(λ2 − 7λ+ 10)

= 0

⇒ λ1 = 0, λ2 = 5, λ3 = 2.

Since all eigenvalues are unique, E can be diagonalised:

D =

 0 0 0
0 5 0
0 0 2

 .

To find the diagonalised matrix Z we need to find the eigenvectors for the corresponding
eigenvalues:

(E− λiI)xi = 0,

where xi is the eigenvector for eigenvalue λi.
Inserting λi = 0 yields:

(E− 0I)xi = Exi =

 1 2 2
1 1 3
1 −1 5

 xi1
xi2
xi3

 =

 0
0
0


⇒ x1 =

 −4
1
1

.

Using the same strategy, x2 =

 1
1
1

 and x3 =

 −8
−5
1

.

The eigenvectors x1, x2 and x3 form the columns of Z:

Z =

 −4 1 −8
1 1 −5
1 1 1

 .
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Question 6

6a

Suppose x is a continuous random variable with probability density function f(x) = 1
2
√
x
; 1 ≤

x ≤ 4. Show that f(x) is a suitable function for a probability density function and calculate
the expected value and variance of x. (6 marks)

Solution: In order for x to be a suitable probability density function, its area should be 1:∫ 4

1
f(x)dx = 1

∫ 4

1
f(x)dx = 1 =

∫ 4

1

1

2
√
x
dx =

[√
x
]4
1

= 1

∴ f(x) is a suitable probability density function.
The expected value is:

E(x) =

∫ 4

1
x

1

2
√
x
dx =

7

3
(≈ 2.33).

The variance is:

Var(x) = E[x2]− (E[x])2 =
31

5
−
(

7

3

)2

=
34

45
(≈ 0.756).

6b

The breakdown of a conveyor belt is modelled by an exponential distribution with a mean of
25 days. Calculate the probability that the conveyor belt breaks down in a 40 day period. (4
marks)

Solution: The probability density function is f(x) = 1
25e
− x

25 ;x ≥ 0:

Prob(0 ≤ x ≤ 40) =

∫ 40

0
f(x)dx

=

∫ 40

0

1

25
e−

x
25dx

=
[
−e−

x
25

]40
0

= −e−
40
25 + 1

≈ 0.798.

6c

Assume a failure can always be repaired and repair time can be neglected. Let n be the number
of failures of the product over time interval t. From first principles, derive an expression for
the probability of a product failing one or more times in time interval t. (10 marks)
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Solution: Subdivide t into k subintervals of length ∆t: k∆t = t. Assume each subinterval
is so small that only one failure can occur within it. Since repair time is neglected there can
always be a failure in a subinterval. The probability of failure is then:

Prob(failure) =
n

k
.

The probability of a non-failure is:

Prob(non-failure) = 1− Prob(failure) = 1− n

k
=
k − n
k

.

Since the product progresses through a series of successive subintervals ∆t it is undergoing a
series of trials of which the outcome is either failure or non-failure.

∴ Prob(non-failure in t) =
(
k−n
k

)k
, and as ∆t→∞: limk→∞

(
k−n
k

)k
.

The binomial expansion of
(
k−n
k

)k
=
(

1− n

k

)k
= 1 + k

(
−n
k

)
+
k(k − 1)

2!

(
−n
k

)2
+
k(k − 1)(k − 2)

3!

(
−n
k

)3
+ . . .

= 1− n+

(
k − 1

k

)
n2

2!
−
(
k − 1

k

)(
k − 2

k

)
n3

3!
+ . . .

= 1− n+

(
1− 1

k

)
n2

2!
−
(

1− 1

k

)(
1− 2

k

)
n3

3!
+ . . .

Let k →∞:

lim
k→∞

(
k − n
k

)k
= 1− n+

n2

2!
− n3

3!
+ . . . ,

which is the power series expansion of e−n.

∴ limk→∞
(
k−n
k

)k
= e−n.

∴ Prob(non-failure in t) = e−n.
∴ Prob(failure in t) = 1− e−n.

6d

The product in (c) consists of 8 individual parts that all must work for the product to
function. The probability of failure of a part is uniformly distributed and is independent of
the probability of failure of the other parts. As in (c), assume a failure can always be repaired
and repair time can be neglected. On average each part fails once every 4 years. Calculate
the probability of the product failing as a result of a part failing within a time period of 1.5
years. (5 marks)

Solution: Since the failure rate r is constant, r = n
t . The mean failure rate is 1

4 for each
part per year. 8 individual parts thus result in a failure rate r = 8

4 = 2 per year. From the
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previous subquestion we know:

Prob(failure in t) = 1− e−n

⇒ Prob(failure in t) = 1− e−rt

Since r = 2 and t = 1.5:

Prob(failure in t) = 1− e−rt

= 1− e−3 ≈ 0.95

Alternatively, a non-failure can be viewed as a Poisson process with λ = 3 and k = 0,
thus:

Prob(failure in t) = 1− λke−λ

k!
= 1− 30e−3

0!
= 1− 1× e−3

1
= 1− e−3 ≈ 0.95
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