1)
$$F = \chi z^{2} i + (z^{2}y - z^{3})j + (2\chi y + y^{2}z)R$$

-

(a)
$$\nabla F = x^2 + y^2 + z^2$$

 $\nabla F = court = a^2 =)$ $x^2 + y^2 + z^2 = a^2$
This is the equation for a sphere of
readily a
=) The iso-Systems are concentric spheres.

(b)
$$\nabla x F = \begin{bmatrix} i & j & k \\ \partial f_x & \partial f_y & \partial f_z \\ F_x & F_y & F_z \end{bmatrix}$$

= $i \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) - j \left(\frac{\partial F_z}{\partial x} - \frac{\partial F_x}{\partial z} \right)$
+ $k \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right)$

$$= i(2x + 2yz + 3z^2) \neq j(2xz - 2y) + 2xyk$$

$$\nabla xF = (2x + 2yz + 3z^{2})i + (2xz - 2y)j + 2xyR$$

(c) Flow
$$x = \oint F \cdot dS$$

Bry Granss Theorem
 $\oint F \cdot dS = \int \nabla \cdot F \, dV$
 $\int \nabla \cdot F = x^2 + y^2 + z^2$
 $from (a)$
 $\nabla \cdot F = x^2 + y^2 + z^2$
 $= y^2$
for sphenical System
 $dV = x^2 \sin \theta \, d\theta \, d\psi \, dY$
 $\int \nabla \cdot F \, dV = \int \iint \int Y^2 \, y^2 \sin \theta \, d\theta \, d\psi \, dY$
 $\int \nabla \cdot F \, dV = \int \iint \int Y^2 \, y^2 \sin \theta \, d\theta \, d\psi \, dY$
 $= 2\pi \, \frac{a^5}{5} \int \sin \theta \, d\theta = 2\pi \, \frac{a^5}{5} - \cos \theta_0^{3/2}$
 $= \frac{2\pi a^5}{5}$
The threa through $S_1 \, \xi \, S_2 = \frac{2\pi a^5}{5}$

(d) Worke done is

$$\oint_{Z} F. dR$$

$$ultime E is the circle
boundaring S1
$$ultime is @ Z_2D.$$
Using Stokess theorem

$$\oint_{Z} F. dL = \int (\nabla xF) \cdot n dA$$

$$\int_{Z} F. dL = \int (\nabla xF) \cdot n dA$$

$$\int_{Z} V xF) \cdot n = -22cy$$

$$\int_{Z} V xF) \cdot n = -22cy$$

$$\int_{Z} V xF) \cdot n dA = -2 \int_{Z} \int_{Z} V^{2} csy siny dy dr$$

$$= \frac{a^{4}}{4} \int_{Z} sin 2y dy = 2D.$$

$$\int_{Z} The workedone is $\oint_{S_{1}} F. dS = \int_{S_{1}} F. dS + \int_{S_{2}} F. dS$

$$From (a) \int_{S_{1}} F. dS = 2\pi a^{5} \frac{2\pi a^{5}}{5}.$$

$$The thus through the lowner surface is $\frac{2\pi a^{5}}{5}.$$$$$$$

comments:

This is a popular question answered quite well by all the candidates. Parts (a) and (b) were answered well. The most common errors found was mostly algebraic for Parts (c) and (d) while evaluating the required integrals. Many students also got the integration limits wrong for spherical and cylindrical polar coordinates required for Parts (c) and (d) respectively. The understanding of concept behind Part (e) was demonstrated well but there were many incorrect final answers as it depends on Parts (c) and (d).

2)
$$U = (2xy+3)i + (x^{2}-4z)j - 4y \times (x^{2})$$
(A)
(i) The biald is consumable is $\nabla x V = 0$

$$\nabla x U = \begin{cases} i & j & \kappa \\ \partial_{2x} & \partial_{2y} & \partial_{2z} \\ U_{x} & U_{y} & U_{z} \end{cases}$$

$$= i \left(\frac{\partial U_{z}}{\partial y} - \frac{\partial U_{y}}{\partial z} \right) - j \left(\frac{\partial U_{z}}{\partial x} - \frac{\partial U_{x}}{\partial z} \right)$$

$$+ \kappa \left(\frac{\partial U_{x}}{\partial x} - \frac{\partial U_{y}}{\partial y} \right)$$

$$= i \left(-4 + 4 \right) - j \left(0 - 0 \right) + \kappa \left(2x - 2x \right) = 0.$$

$$\Rightarrow \nabla x U = 0, \text{ Hence tractice is Consumable.}$$
(ii) $U = \nabla \phi$

$$\Rightarrow \frac{\partial \phi}{\partial x} = 2xy+3 \Rightarrow \phi = x^{2}y+3x+f(y,z)$$

$$\frac{\partial \phi}{\partial z} = x^{2}y - 4z = 3 \quad \phi = x^{2}y - 4yz + f(x,z)$$

$$\frac{\partial \phi}{\partial z} = -4y \quad \Rightarrow \phi = -4yz + f(y,z)$$

$$\Rightarrow \frac{\partial \phi}{\partial z} = -4y \quad \Rightarrow \phi = -4yz + f(y,z)$$
This is the Scalar yzherebul for U .

(4)

(iii) Sing U is conservative
$$U = \nabla \Phi$$

 $f \int U \, dy$ is independent of path.
 $f \int U \, dy = \int \nabla \phi \, dy = \int d\phi = \phi \begin{cases} 2,1,-1 \\ 3,-1,2 \end{cases}$
 $f = \phi \begin{pmatrix} 2,1,-1 \end{pmatrix} - \phi \begin{pmatrix} 3,-1,2 \end{pmatrix} = 6$
(b)
 $\int U \, dy = 6$
(b)
 $\int U \, dy = 6$
(c)
 $\int U \, dy = 6$
 $\int U \, dy = 7 \text{ Sin } \theta$
 $\chi = \chi C G \theta; \quad \chi = \chi Sin \theta$
 $\chi = \chi C G \theta; \quad \chi = \chi Sin \theta$
 $\int G \leq \theta \leq 2\pi$
 $\chi = \chi d\theta dy dZ$
 $\int \int_{\theta} \int_{R_{1}}^{2\pi} \chi, \quad \chi d\theta dX dZ = 2\pi t \frac{\chi^{3}}{3} \int_{R_{1}}^{R}$
 $M = \frac{2\pi t}{3} (R^{3} - R^{3})$

(ii)
$$\int (x^2 + y^2)^{3/2} dV = \int \sqrt{x^2 + y^2} (x^2 + y^2) dV$$

$$= \int \beta \ \gamma^2 dV$$
=) This integral is the moment of the inertia of the plate about the origin (0,0,0)
 $t \prod_{k=0}^{R} 2\pi + \gamma^2 \ \gamma d\theta \, dr \, dZ$

$$= 2\pi t \frac{\gamma 5}{5} \Big|_{R_1}^{R} = \frac{2\pi t}{5} \left(R^5 - R_1^5 \right)$$

$$= \frac{(x^2 + y^2)^2}{4V} = \frac{2\pi t}{5} \left(R^5 - R_1^5 \right)$$

(iii) K- radius of gyration

 \bigcirc

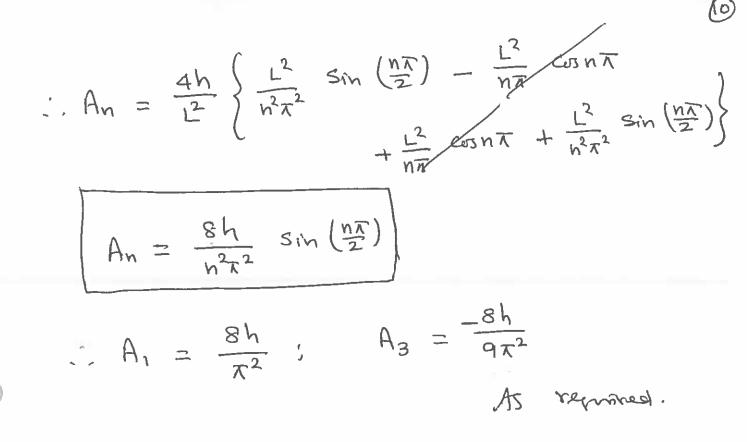
$$M k^{2} = \int gr^{2} dv = \frac{2\pi E}{5} \left(R^{5} - R^{5}_{1} \right)$$

$$K = \frac{2\pi E}{5} \frac{R^{5} - R^{5}_{1}}{R^{3} - R^{3}_{1}} = \frac{3}{5} \frac{(R^{5} - R^{5}_{1})}{(R^{3} - R^{3}_{1})}$$

$$K = \sqrt{\frac{3}{5} \frac{(R^{5} - R^{5}_{1})}{(R^{3} - R^{3}_{1})}}$$

comments:

This is the most popular question and the three parts in (a) were answered well as they are straight forward. Part (b) was also answered quite well but algebraic errors while evaluating the integrals in cylindrical polar coordinates were found to be common. The general physical meaning of the integral in Part (b)(ii) was identified by many students but precise explanation was scant.


	$\begin{array}{c} 3) \frac{\partial^2 y}{\partial t^2} = e^2 \frac{\partial^2 y}{\partial x^2} \\ (a) \end{array}$	$y = 0$ at $\begin{cases} \chi_{20} \\ \chi_{2L} \end{cases}$ $\dot{y}(0) = 0, \dot{u} \dot{y}(t=0) = 0.$	
	$y_2 G(t) F(x)$		
	$=) \frac{1}{c^2} \frac{\vec{G}}{\vec{G}} = \frac{F''}{F} = -\lambda^2$		
	$F'' + \lambda^2 F = 0; F(0) = F(L)$) = 0	
0	=) $F(x) = A \cos \lambda x + B \sin \lambda x$ $F(0)_{20} = A + B = 0; F(L)_{20} = 0 = 0$ $F(x) = \frac{NR}{2}$		
	$F(x) = B Sin(\frac{nx}{L}x)$		
	$G + (\lambda c)^2 G = 0$ be		
\bigcirc	=) $G + w_n G = 0 =) G$	(t) = D coswat + E Sinwat.	
	$\dot{y}(t_{20}) = 0 =) \dot{G}(0) = 0$		
	=) G = - I wn sin what + E wh Coswhit		
	G(0) => E=0		
	: G(t) = D cos when to		
	$\therefore y(t, x) = \underset{n=0}{\overset{ad}{\underset{n=0}{n}{\underset{n=0}{\underset{n=0}{\underset{n=0}{\underset{n=0}{\atopn}{n}{n}}{n}}{n}}}}}}}}}}}}}}}}}}}}}$	$t \sin\left(\frac{n\pi x}{L}\right)$	
	N20 gives y(6,2)20; 3. y(1	$(x) = \underset{n=1}{\overset{\infty}{\underset{n=1}{\overset{n=1}{\overset{n}{\underset{n=1}{\overset{n}{\underset{n=1}{\overset{n}{\underset{n=1}{\overset{n}{\underset{n=1}{\overset{n}{\underset{n=1}{\overset{n}{\underset{n=1}{\overset{n}{\underset{n=1}{\overset{n}{\underset{n=1}{\overset{n}{\atopn}{\underset{n}{\atopn}}{\overset{n}{\underset{n}{\atopn}}{\overset{n}{\underset{n}}{\underset{n=1}{\overset{n}{\atopn}}{\underset{n}}{\overset{n}{\atopn}}{\underset{n}}{}}}}}}}}}}}}}}}}}}}}}}}}}$	
		as semined.	

(b)
$$w_n = \frac{n\pi e}{L}$$

(c) $y(t,x) = \sum_{n>1}^{\infty} A_n \cos w_n t \sin \left(\frac{n\pi x}{L}\right)$
we the initial condition $y(o_1x) = f(x)$
 $f(x) = \sum_{n=1}^{\infty} A_n \sin \left(\frac{n\pi x}{L}\right)$
This is half - Sine Series
thus $A_n = \frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n\pi x}{L}\right) dx$.

(c)

$$\frac{h}{\sqrt{2}} = \frac{h}{\sqrt{2}} = \frac{2h}{L} \times \quad \text{for } 0 \le x \le \frac{1}{2} = \frac{2h}{L} \times \quad \text{for } 0 \le x \le \frac{1}{2} = \frac{2h}{L} \times \quad \text{for } 0 \le x \le \frac{1}{2} = \frac{2h}{L} (L-x) = \frac{1}{2} \le x \le L = \frac{1}{2} = \frac{2h}{L} (L-x) = \frac{1}{2} \le x \le L = \frac{1}{2} = \frac{2h}{L} \times \quad \text{sin} \left(\frac{n\pi x}{L}\right) dx = \frac{1}{2} = \frac{2h}{L} \left(\frac{1}{L} - x\right) = \frac{1}{2} = \frac{2h}{L} \left(\frac{1}{L} - x\right) = \frac{1}{2} = \frac$$

$$\begin{split} \frac{\rho_{m_{1}}}{\int} \frac{\rho_{m_{1}} h_{1}}{\chi} & \sin\left(\frac{n\pi\chi}{L}\right) d\chi &= -\frac{L_{\chi}}{n\pi} \cos\left(\frac{n\pi\chi}{L}\right) \left(\frac{n\pi\chi}{L}\right) d\chi \\ &+ \frac{L_{\chi}}{n\pi} \int \cos\left(\frac{n\pi\chi}{L}\right) d\chi \\ \int \frac{1}{\sqrt{2}} \chi & \sin\left(\frac{n\pi\chi}{L}\right) d\chi &= -\frac{L_{\chi}}{n\pi} \cos\left(\frac{n\pi\chi}{L}\right) \int_{0}^{L_{\chi}} +\frac{L_{\chi}^{2}}{n^{2}\pi^{2}} \sin\left(\frac{n\pi\chi}{L}\right) \int_{0}^{L_{\chi}} \\ &= -\frac{L_{\chi}^{2}}{n\pi} \left(\cos\frac{n\pi\chi}{L} - 0\right) +\frac{L_{\chi}^{2}}{n^{2}\pi^{2}} \left\{\sin\frac{n\pi\chi}{L} - 0\right\} \\ &= +\frac{L^{2}}{n^{2}\pi^{2}} \sin\left(\frac{n\pi\chi}{L}\right) \\ &= -\frac{L_{\chi}^{2}}{n\pi} \cos\left(\frac{n\pi\chi}{L}\right) \left(\frac{1}{2} + \frac{L_{\chi}^{2}}{n^{2}\pi^{2}} \sin\left(\frac{n\pi\chi}{L}\right)\right) \int_{L_{\chi}}^{L_{\chi}} \\ &= -\frac{L_{\chi}^{2}}{n\pi} \cos\left(\frac{n\pi\chi}{L}\right) d\chi \\ &= -\frac{L_{\chi}}{n\pi} \cos\left(\frac{n\pi\chi}{L}\right) \left(\frac{1}{2} + \frac{L^{2}}{n^{2}\pi^{2}} \sin\left(\frac{n\pi\chi}{L}\right)\right) \\ &= -\frac{L^{2}}{n\pi} \left(\cos n\pi - \frac{1}{2}\cos\left(\frac{n\pi\chi}{L}\right)\right) +\frac{L^{2}}{n^{2}\pi^{2}} \left(\sin\frac{n\pi\chi}{L}\right) \int_{L_{\chi}}^{L_{\chi}} \\ &= -\frac{L^{2}}{n\pi} \cos\left(\frac{n\pi\chi}{L}\right) \left(\frac{1}{2} + \frac{L^{2}}{n^{2}\pi^{2}} \sin\left(\frac{n\pi\chi}{L}\right)\right) \\ &= -\frac{L^{2}}{n\pi} \cos\left(\frac{n\pi\chi}{L}\right) \left(\frac{1}{2} + \frac{L^{2}}{n^{2}\pi^{2}} \sin\left(\frac{n\pi\chi}{L}\right)\right)$$

comments:

This is the least popular question. Parts (b) and (c) are answered well. The mechanistic aspects required for Part (a) were answered mostly well but the reason to exclude n = 0 mode was explained only by about 20% of the students attempted this question. Part (d) was not answered well in general and it required evaluation of few integrals – algebraic errors were common and it is likely that most students ran out of time.

(a) det
$$(A) = k^2 + \sqrt{-\sqrt{-2}} = k^2 - 2$$

to have solutions $det(A) \neq 0$
 $k^2 - 2 \neq 0$ $k \neq \mp \sqrt{2}$
for $k \neq \mp \sqrt{2}$. solve by elimination:
 $\begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & k^2 + 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$
 $\begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & k^2 - 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$
 $\begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & k^2 - 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$
and back substitution:
 $\chi_3 = -\frac{2}{k^2 - 2}$
 $\chi_2 + \chi_3 = -1 \implies \chi_2 = -\chi_3 = -\chi_3 = -\frac{k^2}{k^2 - 2} = \frac{k^2}{k^2 - 2}$
 $\chi_4 - \chi_2 + 2\chi_3 = 0 \implies \chi_4 = \chi_2 - 2\chi_3 = \frac{k^2 + 4}{k^2 - 2}$
 $\chi = \begin{pmatrix} \frac{k^2 + 4}{k^2 - 2} \\ -\frac{k}{k^2 - 2} \end{pmatrix}$

$$A = e_1 u_1 + e_2 u_2 + e_3 u_3$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 - 1 & 0 \\ 0 & 1 - 1 \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

$$U$$

$$L$$

$$U$$

$$L$$

$$U$$

$$L$$

$$U$$

$$X = \begin{bmatrix} T & \uparrow & \uparrow \\ X_1 & X_2 & X_3 \\ \downarrow & \downarrow & \downarrow \end{bmatrix}^2 \begin{bmatrix} 3 & 2 & i \\ 2 & 2 & i \\ i & i & i \end{bmatrix}$$

$$A \cdot X = \begin{bmatrix} 1 & -i & 0 \\ -i & 2 & -i \\ 0 & -i & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 & i \\ 2 & 2 & i \\ i & 1 & i \end{bmatrix} = \begin{bmatrix} i & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & i \end{bmatrix} = I$$
Since $A X = I$ $X = A^{-1}$

$$4(c)$$

$$if a \neq 0 \implies L = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad U = \begin{bmatrix} a & b \\ 0 & d - bc/a \end{bmatrix}$$

$$if a = 0 \quad audc = 0 \implies L = \begin{bmatrix} 1 & 0 \\ e & 1 \end{bmatrix} \qquad U = \begin{bmatrix} 0 & b \\ 0 & d \end{bmatrix}$$

$$with \quad aubitrary \ e$$

$$if a = 0 \quad audc \neq 0 \quad it is \quad impossible \quad to factor \ A$$

$$ith \quad non \quad 2eton \quad diagonals \quad in \ L \quad and \ U,$$

so the answer is no

4(d) find eigenvalues of A from $det (A \rightarrow I) = 0$ $det \begin{pmatrix} 1 - \lambda & 0 & 2 \\ 0 & 1 - \lambda & 0 \\ 3 & 0 & 6 - \lambda \end{pmatrix} = 0$ 4 (d) continued

$$(n-\lambda)(n-\lambda)(6-\lambda) - 6(n-\lambda) = 0$$

$$(n-\lambda)[(n-\lambda)(6-\lambda) - 6] =$$

$$= (n-\lambda)[(n-\lambda)(6-\lambda) - 6] =$$

$$= \lambda(-\lambda)[(n-\lambda)(6-\lambda) - 6] =$$

$$= \lambda_1 = 0, \quad \lambda_2 = 1 \quad \lambda_3 = 7$$

$$= \lambda(n-\lambda)(\lambda-7) = 0 \quad \Longrightarrow \quad \lambda_1 = 0, \quad \lambda_2 = 1 \quad \lambda_3 = 7$$

the corresponding eigen vectors are found from ELLE $(A - \lambda_i I) Y_i = 0$ $\lambda = 0$ $\begin{vmatrix} 1 & 0 & 2 \\ 0 & i & 0 \\ 3 & 0 & 6 \end{vmatrix} \begin{vmatrix} x_i \\ y_i \\ z \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ z \end{vmatrix} \quad V_0 = \begin{pmatrix} -2 \\ 0 \\ 0 \\ i \\ i \end{vmatrix}$ $\lambda = 1$ $\begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 \\ 3 & 0 & 5 \end{pmatrix} \begin{pmatrix} x \\ y_i \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ $V_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ $\lambda = 7$ $\begin{pmatrix} -6 & 0 & 2 \\ 0 - 6 & 0 \\ 3 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y_i \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $V_7 = \begin{pmatrix} 1 \\ 0 \\ 3 \\ 3 \end{pmatrix}$

matrix P is:

$$P = \begin{pmatrix} \uparrow & \uparrow \\ \vee_0 & \vee_1 & \vee_7 \\ \downarrow & \downarrow & \downarrow \end{pmatrix} = \begin{pmatrix} -2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{pmatrix}$$

This is invertible because det (P)=-7≠0

4 (d) continued

and $P^{-1} = 1$ CT det(P)where $C = \begin{pmatrix} 3 & 0 & -1 \\ 0 & -7 & 0 \\ -1 & 0 & -2 \end{pmatrix} = C^{T}$ $P^{-1} = \begin{pmatrix} -\frac{3}{7} & 0 & -\frac{7}{7} \\ 0 & 1 & 0 \\ \frac{1}{7} & 0 & \frac{2}{7} \end{pmatrix}$ it is easy to verify that $PP^{-1} = I$ and that $D = P'AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ which bas the eigenvalues on the main diagonal

comments:

A surprisingly large number of candidates failed to state correctly the condition for the system of linear equations to have solutions. Most candidates could solve the more straightforward part on LU factorisation, whereas less candidates seemed comfortable with the more theoretical one. The part on the eigenvalue problem was generally well tackled except for some minor algebraic mistakes.

s (a)
If x is eigenvector of A:

$$Ax = \lambda x$$

 $Ax_{1} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 2 & 1 & 4 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 12 \end{pmatrix} = 4 \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$
so x_{1} is eigenvector of A with eigenvalue q
 $Ax_{2} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 2 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ 8 \end{pmatrix} \neq \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$
set is not eigenvector of A because it is
not possible to find $\lambda \in \mathbb{R}$: $Ax_{2} = \lambda x_{2}$
 $Ax_{3} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 2 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -9 \\ 3 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}$
sets is eigenvector of A with eigenvalue 3
s (b) The eigenvalues of A are $\lambda_{1} = 2$
and $\lambda_{2} = -2$ (A is upper trianquan
and its eigenvalues are the values on
the diagonal
The corresponding eigen vectors are
 $v_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $v_{-2} = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$
and A can be diagonal sed as:
 $D = \overrightarrow{PA} P$ with $D = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$

$$\begin{array}{l} {}^{5}(b) \ \text{continued} \\ \text{Therefore A can be mitten as:} \\ \hline \begin{array}{c} \hline A = P D p^{-1} \\ \hline aud A^{100} = P D^{100} p^{-1} \\ \hline a A^{100} = \begin{pmatrix} 1 & 1 \\ 0 & -4 \end{pmatrix} 2^{100} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^{100} \begin{pmatrix} 1 & 1 \\ 0 & -4 \end{pmatrix}^{-1} \\ \hline a = 2^{100} \begin{pmatrix} 1 & 1 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -4 \end{pmatrix}^{-1} \\ \hline a = 2^{100} \begin{pmatrix} 1 & 1 \\ 0 & -4 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ 0 & -4 \end{pmatrix}^{-1} \\ \hline a = 2^{100} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 2^{100} I \\ \hline a = 2^{100} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 2^{100} I \\ \hline a = 2^{100} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 2^{100} I \\ \hline a = 2^{100} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 2^{100} I \\ \hline a = 2^{100} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix} \\ \hline a = A^{T}b : \\ \hline A^{T}b = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix} \\ \hline a = A^{T}b \text{ to find} \hat{v} \\ \hline a = 3 & 2^{100} \begin{pmatrix} \hat{v}_{1} \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \end{pmatrix} \\ \hline a = 3 & 2^{100} \begin{pmatrix} \hat{v}_{1} \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ \hline a = 2^{100} I \\ \hline a = 2^{100}$$

which yields

$$\hat{v} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$
The projection of b onto the column
Space of A is

$$p = A\widehat{v}$$

$$p = \begin{pmatrix} 1 & 0 \\ 1 & +1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ -3 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix}$$
The projection matrix is

$$P = A (A^{T}A)^{-4} A^{T}$$

$$A^{T}A = \begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix}$$

$$det (A^{T}A)^{-1} = A (5 - 3)$$

$$det (A^{T}A)^{-1} = A (5 - 3)$$

$$P = A \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 5 - 3 \\ -3 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix}$$

5 (d) if A is eigenvalue of R then det (R - 1I) = 0 det (R - I) = 0 $from (R - I)R^{T} = RR^{T} - R^{T} = I - R^{T}$ take determinant $det (R - I) det R = det (I - R^{T}) =$ +1 $= det ((I - R)^{T}) = det (I - R) =$ = det (-1 (R - I))

We have shown that $det(R-1) = -det(R-I) \Longrightarrow det(R-I)=0$

comments:

The first two parts were answered generally well as they were very straightforward (eigenvalues and eigenvectors of an L matrix, diagonalisation and power of a 2x2 matrix). Very few candidates managed to find the best fit solution and projection onto the column space required for part (c). The part (d) required to demonstrate Euler's theorem that every rotation can be represented as a rotation about one axis without using the characteristic polynomial. Although almost all candidates stated that they had obtained the required result, hardly any of them actually managed to produce a working demonstration.

6 (a) it must be

$$\int_{-\Delta}^{+\infty} + (x) dx = 4 \quad \text{or:}$$

$$k \int_{0}^{\infty} x e^{-\frac{x^2}{2}} dx = 4$$

$$\int_{0}^{\infty} x e^{-\frac{x^2}{2}} dx = -\int_{0}^{\infty} \frac{e^{-\frac{x^2}{2}}}{dx} dx = -e^{-\frac{x^2}{2}} \int_{0}^{+\Delta} = 4$$

$$it \text{ follows } k. A = A \implies k = 4$$

$$6 (b) if \text{ the train anives between 8:33 and 8:35, the delays in minutes is 3
$$3 < X \le 5$$

$$P(3 < x \le 5) = \int_{3}^{5} x e^{-\frac{x^2}{2}} dx = -e^{-\frac{x^2}{2}} \int_{3}^{5} = e^{-\frac{x^2}{2}} = \frac{e^{-\frac{x^2}{2}}}{3}$$

$$hit xio^{-2} = hit \frac{\pi}{2}$$

$$6 (c) E(x) = \int_{0}^{+\infty} x^2 e^{-\frac{x^2}{2}} dx = \frac{1}{2} \int_{-\infty}^{+\infty} x^2 e^{-\frac{x^2}{2}} = \frac{\sqrt{2\pi}}{2} = \frac{\sqrt{2\pi}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x^2 e^{-\frac{x^2}{2}} = \frac{\sqrt{2\pi}}{2} = \frac{1}{\sqrt{2\pi}} = 1.25 \text{ min}$$
So the average anival time is:
$$8:31^{1} 15^{11}$$$$

6(d) let Y be the number of times the
train is more than 5 min late
in 10 days
If
$$p = P(X>5)$$
 then Y is binomial
with $m = 10$ and $p = P(X>5)$:
If follows that:
 $P(Y \le 2) = \sum_{K=0}^{2} {10 \choose K} P^{K}(1-P)^{KO-K}$
In this case:
 $P(X>5) = \int_{S}^{\infty} x e^{-\frac{\pi^{2}}{2}} - \frac{\pi^{2}}{2} \int_{S}^{\infty} -\frac{25}{5}$
and the probability that M mill
not be blamed is:
 $P(Y \le 2) = (1 - e^{-\frac{25}{2}})^{10} + 10e^{-\frac{25}{2}} (1 - e^{\frac{25}{2}})^{9} + 45e^{-\frac{25}{2}} (n - e^{-\frac{25}{2}})^{8} ar$

comments:

This question required verifying that an assigned probability density function satisfies the properties of a probability density function, and working out a number of characteristics of the distribution. The candidates were generally comfortable with the required integration by parts, and were not daunted by the numerical value of the train being more than 5 min late being exceedingly small. Typically, very well answered, probably too easy.