

Q2 cont.

Data Book p10
$$M = 1-5$$
, $\frac{4C_1L_1}{D} = 0.1361$

$$M = 1-36$$
, $\frac{4C_1L_2}{D} = 0.0855$

$$\frac{4ctl_{12}}{D} = \frac{4ctl_{1}}{D} = \frac{6.0506}{D}$$

$$\frac{4CL_2}{D} = 0.1181 \text{ (interplated)}$$

Total (obviensionless) length =
$$\frac{4C_1L_2}{D} + \frac{4C_1L_2'}{D} = 0.1687$$

but real (ength is
$$Sm : D = \frac{4 \times 0.0025 \times 5}{0.1687}$$

$$D = 0.296 \, \text{m}$$

Shock is located 1.498 in from the nozzle exit

Isutopic valation:
$$\frac{P}{P_0} = \left(\frac{T}{T_0}\right)^{\frac{8}{8-1}} = \left(\frac{a}{a_0}\right)^{\frac{28}{8-1}}$$

in differential form:
$$\frac{8P}{P} = \frac{28}{84} \frac{8a}{a}$$

Speed of sound
$$a^2 = \frac{8P}{P}$$
 gring $2pa8a = (8-1)8P$

$$8V - \frac{2}{r-1} \delta a = 0$$

$$\therefore d(V - \frac{2}{\sigma - 1}a) = 0 \text{ and } V - \frac{2a}{\sigma - 1} = constant$$

$$V - \frac{2a}{6-1} = constant$$

NB: This part of the question was considered quite hard

(b) (i) benhopic right-running naves
$$V - \frac{2a}{7-1} = constant$$

$$\frac{\alpha_2}{\alpha_1} = \left(\frac{\tau_2}{\tau_1}\right)^{1/2} = \left(\frac{\rho_2}{\rho_1}\right)^{\frac{8-1}{2}} = (0.6)^{\frac{0.2}{2}} = 0.903$$

$$V_2 - \frac{2a_2}{5-1} = V_1^{0} - \frac{2a_1}{5-1}$$

$$V_2 = -\frac{2a_1}{8-1} \left(1 - 0.903\right) = -0.485a_1$$

$$\frac{P_2}{P_1} = \left(\frac{P_2}{P_1}\right)^8 = \left(0.6\right)^{1-4} = 0.489 \Rightarrow P_2 = 97.8 \mu P_2$$

$$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{3-1} = (06)^{64} = 0.815 \Rightarrow T_2 = 326.7 \text{ K}$$

(ii) Some piston
$$-V_2 = a_2 = \Rightarrow -a_2 - \frac{2a_2}{\delta - 1} = \frac{-2a_1}{\delta - 1}$$

$$\frac{a_2}{a_1} = \frac{2}{0+1} = 0.833$$

$$\frac{P_2}{P_1} = \left(\frac{r_2}{r_1}\right)^{\frac{x}{\sigma-1}} = \left(\frac{a_2}{a_1}\right)^{\frac{2x}{\sigma-1}} = 0.833 = 0.2783$$

$$\frac{T_2}{T_1} = \left(\frac{a_2}{a_1}\right) \Rightarrow T_2 = 277.5 \text{ K}$$

(a) From data back:
$$\frac{\ell_2}{\ell_1} = \frac{(\delta+1) \, M_1^2 \, \text{sih}^2 \, R}{2 \left[1 + \frac{\delta-1}{2} \, M_1^2 \, \text{sih}^2 \, R\right]}$$
. As $M_1 \to \infty$, $\ell_2 \to \frac{(\delta+1) \, M_1^2 \, \text{sin}^2 \, R}{(F-1) \, M_1^2 \, \text{sin}^2 \, R} = \frac{\delta+1}{\delta-1}$

b) From databook:
$$tm\theta = \frac{2 \cos \beta \left(M_1^2 \sin^2 \beta - 1\right)}{\left(2 + 1\right) M_1^2 - 2 \left(M_1^2 \sin^2 \beta - 1\right)} \cdot As M_1 - 20 + tm\theta \rightarrow 2 \cot \beta \left(M_1^2 \sin^2 \beta\right)}$$

$$\frac{(2+1) M_1^2 - 2 \left(M_1^2 \sin^2 \beta - 1\right)}{\left(2 + 1\right) M_2^2 - 2 \left(M_1^2 \sin^2 \beta\right)}$$

c)
$$\frac{\partial \left(4m \cdot \theta_{0}\right)}{\partial \beta} = \frac{2 \cdot \cos 2\beta}{8 + \cos 2\beta} - \frac{3i \cdot 2\beta \left(-2 \sin 2\beta\right)}{\left(8 + \cos 2\beta\right)^{2}} = 0$$

$$2 \cos 2\beta \left(\delta + 4 \cos 2\beta \right) + 2 \sin^2 2\beta = 0$$

$$\delta \cos 2\beta + 4 \cos^2 2\beta + \sin^2 2\beta = 0 \implies \cos 2\beta = \frac{-1}{r}$$

$$\delta \cos 2\beta + 4 \cos^2 2\beta + 67.79^\circ$$

$$for \theta_{1} = \frac{g_{1}h^{2}\beta}{Y + con^{2}\beta}$$
 $fr = 67.79$ $\theta = 45.58^{\circ}$

Omax decreases with relocity M

d) From with he symmetric normal controlice, to control hely:

My Mal Morh with sweething from behing.

NB: Careful drawing is required.

6

Note: Draw wave anylos carefully and note especially their relation to each other. Eg.: Cast wave of first expansion fam is parallel to first wave of the second examision

6) romes for
$$f = 1.4$$
: $M_0 = 2.00$ $\theta_0 = 0$ ° $\frac{600}{P_{00}} = 0.1278$

$$00 \rightarrow 0$$
: $M_{i} = 1.3131$ $\frac{h_{01}}{h_{00}} = 0.92092$ $\theta_{i} = 18^{\circ}$ $v_{i} = 6.527$ $\frac{h_{i}}{h_{00}} = 2.5546$

① -③:
$$\theta_3 = +18^\circ$$
 $\theta_2 = 0^\circ$ $V_3 = 42.527 $\Rightarrow M_3 = 2.6499$ $\frac{\beta_3}{\beta_{03}} = 0.04641$$

Jo M3 = 2.6499 0 = 180 comes : week orwigne (3-) 4 phriese.

c. Dry = 5.042 kN.

c) only dept a width affect projected fortal area. A, so nicreate length.

Note: Length L is not needed for this question!

(and it was wrongly indicated in the figure)

$$\frac{\partial u}{\partial t} + A \frac{\partial u}{\partial x} = 0 \qquad - (A)$$

$$u_{i}^{n+1} = u_{i}^{n} + \frac{\partial u}{\partial t} \Big|_{i}^{n} \Delta t + \frac{\partial^{2}u}{\partial t^{2}} \Big|_{i}^{n} \frac{\Delta t^{2}}{2} + \cdots$$

$$u_{i-1}^{n} = u_{i}^{n} - \frac{\partial u}{\partial x} \Big|_{i}^{n} \Delta x + \frac{\partial^{2}u}{\partial x^{2}} \Big|_{i}^{n} \frac{\Delta x^{2}}{2} + \cdots$$

$$The FD Schemo is:$$

$$u_{i}^{n+1} = u_{i}^{n} - \langle (u_{i}^{n} - u_{i-1}^{n}) \rangle - (3)$$

$$\frac{yx^{4} + \frac{\partial u}{\partial t} \Delta t + O(\Delta t^{2}) = yx^{4} - C(yx^{4} - ux^{4})}{+ \frac{\partial u}{\partial t} \Delta x - O(\Delta x^{2})}$$

$$\frac{\partial u}{\partial t} + \frac{c \Delta x}{\Delta t} \frac{\partial u}{\partial x} = O(\Delta t^{2}) + O(\Delta x)$$

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = O(\Delta t) + O(\Delta x).$$

The scheme is first order accurate in space and time.

(b) Let
$$U_i^n = E$$
 a $U_{i-1}^n = -E$. Then substituting this in (3) gives:

$$\frac{u_i^{A+1}}{\varepsilon} = 1 - 2c$$

-1 < 1-20 < 1

The Bondikm for stability is

Q6 cont

For stability

-1< 1+24 < 1

As c>0, thus condition convet be satisfied for any valve of c.

The reson is that the governing equation is hyporbolic with a right-travelling wave. We need a backword of difference scheme to be within he domain of dependence. The modified scheme is a forward difference schome, so is unstable.

This was a very popular and well answered question, possibly a bit too easy.

Q7 a) Hyperbolic.

Wave equation:
$$\frac{\partial u}{\partial t} + A \frac{\partial u}{\partial x} = 0$$

Initial value problem. Information propagates along characteristics. If the name is travelly to the right, a backward differencing sech schame or 'Upwinding'.

Elliphe

Boundary value problem. Every point in the domain affects every other point. As there are no Characteristics control of ference schemes work well.

Parabolic

Heat conduction
$$\frac{\partial u}{\partial t} - v \frac{\partial^2 u}{\partial x^2} = 0$$
.

Initial & bornday value problem. Signal bravel in a particular direction and diffuse in space. Use a time morning schome, but a control of ferome in space.

a) Reaction stage 1 = 50%

 V_{1} V_{2} V_{2} V_{3} $V_{4} = V_{2,1}RR$ $V_{5} = V_{2,1}RR$ $V_{5} = V_{2,1}RR$ $V_{5} = V_{2,1}RR$ $V_{7} = V_{2}$ $V_{8} = V_{2,1}RR$ $V_{1} = V_{2}$ $V_{2} = V_{3,1}RR$ $V_{3,1}RR$ $V_{4} = V_{4}$ $V_{5} = V_{2,1}RR$

Note similarly in velocity bridges, this Vsitee = V2 Aho = A(UVO) = U(U-0) = U2

: 4= tho = 1 (Stage Coarly coefficient)

 $\frac{\sqrt{2}}{\sqrt{2}} \sqrt{\sqrt{2}} \sqrt{\sqrt{2}} \sqrt{\sqrt{2}} = 0$ $\frac{\sqrt{2}}{\sqrt{2}} \sqrt{\sqrt{2}} \sqrt{\sqrt{2}} \sqrt{\sqrt{2}} = 0$ $\frac{\sqrt{2}}{\sqrt{2}} \sqrt{\sqrt{2}} \sqrt{\sqrt{2}} \sqrt{\sqrt{2}} = 0$ Va = 20

Aho= U(2U-0) = 2U2 : 4 = 1/0 = 2

b) For each row, $y = \frac{P_0 - P_{02}}{P_{02} - P_2} = \frac{\Delta P_0}{28V_2^2}$

Reaction stage: $Y_R = \frac{spo_R}{12 R v_s^2}$ (for rotor and stator)

From velocity triangle: COS & = Vx tan & = 0 thus: $\phi = \frac{V_2}{V} = \frac{\cos \alpha_2}{\sin \alpha_2} = \frac{\cos \alpha_2}{\sqrt{1 - \cos^2 \alpha_2}} = \frac{V_2}{\sqrt{1 - \cos^2 \alpha_2}}$

Q8 cont.,

b) cod. Impuße stage $X = \frac{\Delta Pot}{2 S V_2}$ (Por rotor + stator)

but tand2 = 20 (stator)

and tangs = Ux (roton)

Thus $\frac{\Delta PoI}{\frac{1}{2}gV_X} = \frac{4+6^2}{\int I} \frac{dbnivation}{dc}$ (as before)

and $\frac{A Po_{I}}{\frac{1}{2} S V_{x}^{2}} = \frac{1+\beta^{2}}{4^{2}}$

Loss for storye $\frac{\Delta Pot}{\frac{1}{2}SV_{x}^{2}} = \sqrt{\frac{4+q^{2}+4q^{2}}{q^{2}+q^{2}}}$

= XI p2

() Impulse stage more highly Coacled -> How Glely to have quanti Coss

But: Need two reaction stayes for same power output.

Loss for duo reaction stages: 4 / 1+92

for one impulse stage: YI 5+262

For Sneuk-evan / (4+4 p2) = (5+2 p2) / : \frac{\frac{1}{2}}{\frac{1}{2}} = \frac{5+2p^2}{4+4p^2}

9 1 0.75 0.5 0.25 YB back-even 0.875 0.38 1.10 1.21

Many candidates failed to see the significance of the reaction percentage on the velocity triangles

win over.

3 18 2 2 1