QI
a) from data book

$$
M_{2}=\sqrt{\frac{1+\frac{8-1}{2} M^{2}}{\gamma M^{2}-\frac{\gamma-1}{2}}}
$$

$7_{2}: M$ downstream of shock wave
for $M \rightarrow \infty \quad M_{2}^{2} \Rightarrow \frac{\frac{8-1}{2} M^{2}}{8 M^{2}}=\frac{18-1}{28}$ (actually 7 this is, $\left.\begin{array}{c}\text { a minimum }\end{array}\right)$
b)

In shock reference fracture (shock moves at C_{s}):

$$
\xrightarrow[p_{1} \rho]{c_{s}+v} \mid \xrightarrow[p_{s}, \rho_{s}]{c_{s}}
$$

Continuity: $\quad \rho_{s} c_{s}=\rho\left(c_{s}+v\right) \quad A=$ cons.
thus $\frac{\rho_{s}}{\rho}=\frac{C_{s}+v}{C_{s}}=\frac{(\gamma+1) M_{s}^{2}}{2\left(1+\frac{\rho^{2}}{2} \Pi_{s}^{2}\right)}$
(Ditaboole) where $M_{s}=$ shock Mach number)
also: $M_{s}=\frac{C_{s}+V}{a}$
using $M=\frac{c}{a}$ (inflow Mach number in stationer frame.)

$$
\begin{gathered}
\quad \frac{c_{s}+v}{C_{s}}=\frac{M_{s}}{M_{s}-M}=\frac{(\gamma+1) M_{s}^{2}}{2\left(1+\frac{p-1}{2} M_{s}^{2}\right)} \\
\therefore \quad 2+(\gamma-1) M_{s}^{2}=(\gamma+1) M_{s}^{2}-(\gamma+1) M_{s} M \\
\quad 2 M_{s}^{2}-(\gamma+1) M_{s} M-2
\end{gathered}=0
$$

ignore negative solution (not physical) $T=500 \mathrm{c} ; v=250 \frac{5}{5} \Rightarrow a=480$

$$
\begin{aligned}
\quad M=\frac{250}{448.2} & =0.558 \\
\therefore M_{s}=1.389 \quad \therefore c_{s} & =M_{s} \cdot a-v=372.5 \frac{2}{3}
\end{aligned}
$$

ii) $\frac{p_{s}}{P}=2.0875$ (Dena book, $r=1.39$) $p_{s}=313.1 \mathrm{kPa}$

Note: Iterative solution using table r dines the same result

Q2(a)

i) $\overbrace{\text { subsulic }}^{i}$
hictulus: \rightarrow conegul! nozele
frictucules $\stackrel{\rightharpoonup}{\text { Gretion }}$ cun-di
nuzzle
Note curve for shock in nozzí (case 4). I seuhapis
(b)

(2) $\sim^{n} n>1 \quad n<1$
(3) $\sim n<1$
(4) $M<1$

(1) Supesaic at nozzle exit, pipe exit choked
(2)
' k
, shock nave in pife
(3) Shock at nuzile exit,
(4) shook in the nezzle,
(5) Somic at nuzzle throat,
((0) subsouic, unchoked at pipe exit

Q2 cont.
(c)

$$
c_{f}=0.0025
$$

Data Book plo $\quad M=1-5, \quad \frac{4 C_{f} L_{1}}{D}=0.1361$

$$
\begin{aligned}
n=1.36, \frac{4 C_{f} L_{2}}{D} & =0.0855 \\
\frac{4 C f L_{2}}{D}=\frac{4 C_{f} L_{1}}{D}-\frac{4 C_{f} L_{2}}{D} & =0.0506
\end{aligned}
$$

Data Bods plo, $\quad M=1.36, \quad M_{s}=0.7572$

$$
\begin{aligned}
\frac{4 C_{f} L_{2}^{\prime}}{D} & =0.1181 \text { (intepdated) } \\
\text { Total (dimensionless) Length } & =\frac{4 C_{f} L_{12}}{D}+\frac{4 C_{f} L_{2}^{\prime}}{D}=0.1687
\end{aligned}
$$

but real length is $S_{m} \therefore D=\frac{4 \times 0.0025 \times 5}{0.1687}$

$$
\text { ie } D=0.296 \mathrm{~m}
$$

Since $\frac{4 C_{F} L_{12}}{D}=0.0506, L_{12}=1.498 \mathrm{~m}$
Shock is located 1.498 m from the nozzle exit

Q3 (a)

$$
\underset{a+v}{v+\delta v}|\underset{p+\delta p}{\longrightarrow}| \rightarrow p, \left.p \quad \underset{~ s u b r a c t}{\longrightarrow} \quad \underset{p+\delta p}{\longrightarrow} \quad \begin{gathered}
a-\delta v \\
(a+v)
\end{gathered} \right\rvert\, \leftarrow a, p
$$

lab fruare
wave frane

Morenture eqn: $\quad \delta P=$ padV
Isurtopic velation: $\frac{P}{P_{0}}=\left(\frac{T}{T_{0}}\right)^{\frac{\gamma}{\gamma-1}}=\left(\frac{a}{a_{0}}\right)^{\frac{2 \gamma}{\gamma-1}}$
in defterential form: $\frac{\delta \rho}{\rho}=\frac{2 \gamma}{\gamma-1} \frac{\delta a}{a}$
Speed of sound $a^{2}=\frac{\gamma p}{\rho}$ gring $2 p a \delta a=(\gamma-1) \delta p$
Subscitute for δP is morkectur equ

$$
\begin{gathered}
\delta V-\frac{2}{\gamma-1} \delta a=0 \\
\therefore d\left(V-\frac{2}{\sigma-1} a\right)=0 \text { and } V-\frac{2 a}{\gamma-1}=\text { constant }
\end{gathered}
$$

NB:This part of the question was considered quite hard

Q3 cout
(b) (i) Kenhopic right-nenning waves $V-\frac{2 a}{\gamma-1}=$ constant

$$
\begin{aligned}
& \frac{a_{2}}{a_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{1 / 2}=\left(\frac{p_{2}}{\rho_{1}}\right)^{\frac{\gamma-1}{2}}=(0.6)^{0.2}=0.903 \\
& V_{2}-\frac{2 a_{2}}{\gamma-1}=V_{1}^{\prime \prime 0}-\frac{2 a_{1}}{\gamma-1} \\
& V_{2}=-\frac{2 a_{1}}{\gamma-1}(1-0.903)=-0.485 a_{1} \\
& a_{1}=\sqrt{\gamma R T_{1}}=400.9 \mathrm{~m} / \mathrm{s} \Rightarrow V_{2}=194.4 \mathrm{~m} / \mathrm{s} \\
& \frac{p_{2}}{p_{1}}=\left(\frac{\rho_{2}}{\rho_{1}}\right)^{\gamma}=(0.6)^{1-4}=0.489 \Rightarrow p_{2}=97.8 \mathrm{kPa} \\
& \frac{t_{2}}{T_{1}}=\left(\frac{\rho_{2}}{\rho_{1}}\right)^{\gamma-1}=(0.6)^{0.4}=0.815 \Rightarrow T_{2}=326.7 \mathrm{~K}
\end{aligned}
$$

(ii) Sour piston $-V_{2}=a_{2} \Rightarrow-a_{2}-\frac{2 a_{2}}{\gamma-1}=\frac{-2 a_{1}}{\gamma-1}$

$$
\begin{aligned}
\frac{a_{2}}{a_{1}}=\frac{2}{\partial+1} & =0.833 \\
\frac{p_{2}}{p_{1}}=\left(\frac{T_{2}}{r_{1}}\right)^{\frac{\gamma}{\gamma-1}} & =\left(\frac{a_{2}}{a_{1}}\right)^{\frac{2 \gamma}{\partial-1}}=0.833^{7}=0.2783 \\
\therefore \frac{P_{2}}{} & =55.66 \mathrm{kPa} \\
\frac{T_{2}}{T_{1}} & =\left(\frac{a_{2}}{a_{1}}\right)^{2} \Rightarrow T_{2}=277.5 \mathrm{~K}
\end{aligned}
$$

(a) From databorh: $\frac{l_{2}}{\rho_{1}}=\frac{(\gamma+1) m_{0}^{2} \sin ^{2} \beta}{2\left[1+\frac{\gamma-1}{2} m_{1}^{2} \sin ^{2} \beta\right]}$. As $n_{1} \rightarrow \infty, \frac{l_{2}}{\rho_{1}} \rightarrow \frac{(\gamma+1) m_{2}^{2} \sin ^{2} \alpha \beta}{(r-1) m_{1}^{2} \sin ^{2} \beta}=\frac{\gamma+1}{\gamma-1}$
b)

$$
\begin{aligned}
& \text { Inton dutacosit: } \tan \theta=\frac{2 \cot \beta\left(m_{1}^{2} \sin ^{2} \beta-1\right)}{(\gamma+1) \mu_{1}^{2}-2\left(m_{1}^{2} \sin ^{2} \beta-1\right)} \cdot A_{1} \mu_{1} \rightarrow \infty+m \theta \rightarrow \frac{2 \cot \beta\left(n_{1}^{2} \sin ^{2} \beta\right)}{\left.(\gamma+1) \mu_{1}^{2}-2\left(m_{1}^{2}\right) \mu_{2}^{2} \beta\right)} \\
& \therefore \tan \theta \rightarrow \frac{2 \cos \beta \sin \beta}{(\gamma+1)-2 \sin ^{2} \beta}=\frac{\sin 2 \beta}{\gamma+\cos 2 \beta} .
\end{aligned}
$$

c)

$$
\begin{aligned}
& \frac{\partial\left(\tan \theta_{0}\right)}{\partial \beta}=\frac{2 \cos 2 \beta}{\gamma+\cos 2 \beta}-\frac{\sin 2 \beta(-2 \sin 2 \beta)}{(\gamma+\cos 2 \beta)^{2}}=0 \\
& \therefore \quad 2 \cos 2 \beta(\gamma+\cos 2 \beta)+2 \sin ^{2} 2 \beta=0 \\
& \gamma \cos 2 \beta+\cos ^{2} 2 \beta+\sin ^{2} 2 \beta=0 \Rightarrow \cos 2 \beta=\frac{-1}{\gamma} \\
& \quad<2 \operatorname{\gamma }=1.4 \quad \beta=67.79^{\circ} \\
& \tan \theta_{\operatorname{H}}=
\end{aligned}
$$

$\Theta_{\text {max }}$ decreases with relucing M
d) Fuw with he symonetic anound centrelivie, to consise half:

NB: Caredul drawing is requited.

Note: Draw wave angles carefully and note especially their relation to each other. Eg.: Cast wave of first expansion fan is parallel to first ware of the second expoxucion
b) Tomes of $\gamma=1.4 ; M_{\infty}=2.00 \quad \theta_{\infty}=0^{\circ} \quad \frac{p_{0 \infty}}{p_{0}}=0.1278$

$$
\infty \rightarrow \text { (1): } M_{1}=1.3131 \quad \frac{p_{0} 1}{p_{0} 0}=0.92092 \quad \theta_{1}=-180 \quad \nu_{1}=6.527 \quad \frac{p_{1}}{p_{00}}=2.5546
$$

(1) \rightarrow (2) : $\alpha(\nu-\theta)=0 \quad \theta_{2}=0^{\circ} \quad \therefore \quad \nu_{2}-\theta_{2}=\nu_{1}-\theta_{1} \quad \beta_{02}=\beta_{01}$

$$
v_{2}=(6.527+18)-0^{\circ}=24.527 \Rightarrow M_{2}=1.9335
$$

(2)
(3):

$$
\theta_{3}=+180 \quad \theta_{2}=0^{\circ} \quad \nu_{3}=42.527 \Rightarrow m_{3}=2.6499 \quad \frac{p_{3}}{p_{03}}=0.04641
$$

fo $M_{3}=2.6499 \quad \theta=180<\theta_{\text {max }} \therefore$ weak orwipue (3) \rightarrow (4) piribste \therefore do art Puppet Pyperots-:.

$$
\begin{aligned}
\therefore p_{1} & =2.5546 p_{00} \\
p_{3}=0.0464 / p_{03} & =0.04641 p_{01}=0.04641 \times 0.92092 p_{00} \\
& =0.4641 \times 0.92092 \times \frac{p_{0}}{0.1278}=0.3344 p_{0} \\
D r y & =\Delta p \times A=(2.5546-0.3344) p_{\infty} \times 0.3 \times 1=0.6661 p_{0}(\mathrm{~N}) \\
h=18.000 \mathrm{~m} \quad \frac{p_{\infty}}{p_{S L}} & =0.0747 \quad p_{r a}=101325 \mathrm{~N}^{2} / \mathrm{m}^{2}=\beta_{0}=7569 \mathrm{~N} / \mathrm{m}^{2} \\
\therefore D r y & =5.042 \mathrm{kN} .
\end{aligned}
$$

c) Only depth k wide t affect projected footer ares. A, so recreate leapt.

Note: Length L is not reeled for this question! (and it was wrongly indicated in the fyyue)

Q6

$$
\begin{equation*}
\frac{\partial u}{\partial t}+A \frac{\partial u}{\partial x}=0 \tag{A}
\end{equation*}
$$

(a) Use Taylor series expansion:

$$
\left[\begin{array}{rl}
u_{i}^{n+1} & =u_{i}^{n}+\left.\frac{\partial u}{\partial t}\right|_{i} ^{n} \Delta t+\left.\frac{\partial^{2} u}{\partial t^{2}}\right|_{i} ^{n} \frac{\Delta t^{2}}{2}+\cdots \\
u_{i-1}^{n} & =u_{i}^{n}-\left.\frac{\partial u}{\partial x}\right|_{i} ^{n} \Delta x+\left.\frac{\partial^{2} u}{\partial x_{i}^{2}}\right|_{i} ^{n} \frac{\Delta x^{2}}{2}+\cdots
\end{array}\right.
$$

The FD scheme is:

$$
\begin{equation*}
u_{i}^{n+1}=u_{i}^{n}-c\left(u_{i}^{n}-u_{i-1}^{n}\right) \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
w_{u}^{K}+\frac{\partial u}{\partial t} \Delta t+O\left(\Delta t^{2}\right) & =y^{n}-c\left(y^{N}-u_{x}^{n}\right. \\
& \left.+\frac{\partial u}{\partial x} \Delta x-O\left(\Delta x^{2}\right)\right)
\end{aligned}
$$

$$
\therefore \frac{\partial u}{\partial t}+\frac{c \Delta x}{\Delta t} \frac{\partial u}{\partial x}=O\left(\frac{\left.\Delta r^{2}\right)}{\Delta t}+D(\Delta x)\right.
$$

$$
\begin{aligned}
& c=\frac{A \Delta t}{\Delta x} \\
\Rightarrow & \frac{\partial u}{\partial t}+\frac{A \partial u}{\partial x}=O(\Delta t)+O(\Delta x) .
\end{aligned}
$$

The scheme is first order accurate in space and time.

Q6 count
(b) Let $u_{i}^{n}=\varepsilon$ a $u_{i-i}^{n}=-\varepsilon$. Then substituting this in (3) gives:

$$
\begin{aligned}
u_{i}^{n+1} & =\varepsilon-c(\varepsilon+\varepsilon) \\
* \frac{u_{i}^{n+1}}{\varepsilon} & =1-2 c
\end{aligned}
$$

for stabling,

$$
\begin{aligned}
& -1<1-2 c<1 \\
& \Rightarrow \quad 0 \lll 1
\end{aligned}
$$

Because $c>0$ ($A, \Delta t$, Δx are all positive)
the sondilim fou stabiting is

$$
c<1
$$

(c) With the modified stabiting scheme, we have:

$$
u_{i}^{+11}=u_{i}^{n}-c\left(u_{i+1}^{n}-u_{i}^{n}\right)
$$

Let $u_{i}{ }^{\wedge}=\varepsilon \quad u_{i+1}^{\wedge}=-\varepsilon$

$$
\begin{aligned}
& \Rightarrow \quad u_{i}^{n+1}=\varepsilon-c(-\varepsilon-\varepsilon) \\
& \text { or } \frac{u_{i}^{n+1}}{\varepsilon}=1+2 c
\end{aligned}
$$

For sabiling

$$
-1<1+2 \ll 1
$$

As $c>0$, thu 3 condition cannot be satisfied for any value of c.

The reason is that the governing equation is hyperbolic with a right-travelting wave. We need (the first scheme) a backword \& difference scheme to be within the domain of depestedence. The modified shave is a forward differnce scheme, so is unstable.

This was a very popular and well answered question, possibly a bit too easy.
a)

Hy perbolic.

Ware equetion: $\quad \frac{\partial u}{\partial t}+A \frac{\partial u}{\partial x}=0$
Initial value poblem. taformation propegats along onoracteristics. If the werve is travelur to the rignt, ore a backinord differencing -th schave or 'upwinding".

Elliptic

$$
\nabla^{2} \phi=0 \quad \text { Potentizl flow }
$$

Boundary value problem. Enory point in the demain affecls ewery other point. As thee ore no characteristizs, central difference schemes work well.

Parabold 6
Heat conduction $\frac{\partial u}{\partial t} \rightarrow \frac{\partial \partial^{2} u}{\partial x^{2}}=0$.
Initial \& borndery rabe problen, Signal trave in a particaler direction ane difuse in space. Use a tive morchiy sehome, that is ceurbal differeme in space.

Q7 cont.

Assume stealy flow
Changein angular nomentun = torque

$$
\text { Torque }=\dot{n}\left(r_{2} v_{\theta_{2}}-r_{1} v_{\theta_{1}}\right)
$$

V_{B} : flow in taugenhive
Power: $w_{x}=$ Torque $\cdot \Omega$ drection

$$
=i n \Omega\left(r_{2} v_{\theta_{2}}-r_{1} v_{\theta_{1}}\right)
$$

Nole: $\Omega_{r}=U$

$$
\therefore \frac{w_{x}}{\dot{w}}=U_{2} V_{\theta_{2}}-U_{1} V_{\theta_{1}}
$$

Stenly flow energy equation: $Q-W_{x}=\Delta h_{0}$ in thus) assumng adiabatic flow

$$
\frac{w_{x}}{\dot{m}}=\Delta\left(u V_{\theta}\right) \quad q \cdot e \cdot d .
$$

Euler wark eqn: $\Delta h_{0}=\Delta\left(U V_{\theta}\right)=U V_{\theta_{2}} \quad\left(V_{\theta_{1}}=0\right)$
from shetch: $V_{Q_{2, \text { wase }}}>V_{\theta_{2}}$

$$
\begin{aligned}
& \therefore \quad h_{0 \text { orwake }}>h_{02} \\
& \therefore \quad T_{\text {Drwa. }}>T_{n 7} \text { q.e.d. }
\end{aligned}
$$

QP
a) Reaction stage $\Lambda=50 \%$

Note similarity in velocity trimengles, that $v_{3_{1} \text { ne }}=v_{2}$

$$
\begin{aligned}
& \Delta h_{0}=\Delta\left(U V_{\Theta}\right)=U(U-0)=U^{2} \\
& \therefore \psi=\frac{\Delta h_{0}}{U^{2}}=1 \quad \text { (stage Poachy coefficient) }
\end{aligned}
$$

Impulse stay $\Lambda=0 \%$

$$
\begin{aligned}
& \Delta h_{0}=U(2 v-0)=2 v^{2} \\
& \therefore \psi=\frac{\Delta h_{0}}{U^{2}}=2
\end{aligned}
$$

b) For each row, $y=\frac{p_{01}-p_{02}}{p_{02}-p_{2}}=\frac{\Delta p_{0}}{\frac{1}{2} \rho v_{2}^{2}}$ Reaction stage: $Y_{R}=\frac{\Delta P_{O R}}{\frac{1}{2} \rho v_{2}^{2}} \quad$ (for rotor aud stator)
From velocity triangle: $\cos \alpha_{2}=\frac{V_{x}}{V_{2}} \quad \tan \alpha_{2}=\frac{U}{V_{x}}=\frac{1}{\phi}$ thus: $\phi=\frac{v_{t}}{V}=\frac{\cos \sigma_{2}}{\sin \alpha_{2}}=\frac{\cos \sigma_{2}}{\sqrt{1-\cos ^{2} \alpha_{2}}}=\frac{\frac{v_{1}}{v_{2}}}{\sqrt{1-\left(\frac{v_{1}}{v_{2}}\right)^{2}}}$

$$
\therefore \quad\left(\frac{v_{x}}{v_{2}}\right)^{2}\left(1+\phi^{2}\right)=\phi^{2} \quad \text { Thus: }: \frac{\Delta p_{O R}}{\frac{1}{2} g v_{x}^{2}}=y_{R} \cdot \frac{1+\phi^{2}}{\phi^{2}}
$$

Total loss: $2 \cdot y_{R} \xrightarrow{l+d^{2}}$ for stave

Q8 cont.)
b) con. Impulse stage $Y_{I}=\frac{\Delta P O I}{\frac{1}{2} \rho V_{2}^{2}}$ (forrotortstator)
but $\tan \alpha_{2}=\frac{2 U}{V_{x}}$ (stator)
and $\tan \alpha_{3}=\frac{U}{V x} \quad$ (rotor)
Thus $\left.\quad \frac{\Delta P_{O I}}{\frac{1}{2} \rho v_{x}^{2}}\right|_{\text {Shat }} ^{1}=y_{I} \frac{4+\phi^{2}}{\phi^{2}} \quad$ (as befivione)
and $\left.\frac{A \rho_{O}}{\frac{1}{2} \rho v_{x}^{2}}\right|_{\text {rotor }}=y_{I} \frac{1+\phi^{2}}{\phi^{2}}$
Loss for stage $\left.\frac{\Delta p_{0}:}{\frac{1}{2} \rho_{x_{x}^{2}}^{2}}\right|_{\text {mapratshege }}=y_{I}\left[\frac{4+\phi^{2}}{\left.\frac{\phi^{2}}{\phi^{2}}+\frac{1+\phi^{2}}{\phi^{2}}\right]}\right]$

$$
=y_{T} \frac{5+2 \phi^{2}}{\phi^{2}}
$$

c) Impulse stane more highly Coorled \rightarrow thus like to havegrait Cos But: Need two reaction stages for same power output.
Loss for two reaction stapes: $4 y_{R} \frac{1+\phi^{2}}{\phi^{2}}$
for one impulse stage: $Y_{I} \frac{5+2 \phi^{2}}{\phi^{2}}$ For break-even $Y_{R}\left(4+4 \phi^{2}\right)=\left(5+2 \phi^{2}\right) Y_{I} \therefore \frac{Y_{R}}{Y_{I}}=\frac{5+2 \phi^{2}}{4+4 \phi^{2}}$

ϕ	1	0.75	0.5	0.25
$\frac{y_{R}}{y_{I}}$ berkenen	0.875	0.98	1.10	1.21

Q8 cont.
c) cont.

Loss Gels increate as ϕ reduces. For same overall loss the reaction stage must have sigmifiantly lower loss Gels as ϕ increases, Reaction stage benefits from lower launching which should reduces losses. At low \varnothing (underseas) the reaction stage can have comparable Cosses to impulse stage to break even. \rightarrow in practice the ave likely to be lower so reaction design will be more efficient then. Conversely at high of impulse design may evarivaliy win our.

Many candidates failed to see the significance of the reaction percentage on the velocity triangles

