
MODULE 3A5  −  THERMODYNAMICS AND POWER GENERATION 
SOLUTIONS 

1.  (a) 

  

  

f = u −Ts
df = du −Tds− sdT

= du − (du + pdv)− sdT
= − pdv − sdT

 

∴  
  
p = − ∂ f

∂v
⎛

⎝⎜
⎞

⎠⎟ T

and s = − ∂ f
∂T

⎛

⎝⎜
⎞

⎠⎟ v

 

but  
  
∂2 f
∂T ∂v

=
∂2 f
∂v∂T

 

∴  

 

∂p
∂T

⎛

⎝⎜
⎞

⎠⎟ v

=
∂s
∂v

⎛

⎝⎜
⎞

⎠⎟ T

 

 

(b)   
 
p = − ∂ f

∂v
⎛

⎝⎜
⎞

⎠⎟ T

=
RT

v − b
 

∴  
  
p(v − b) = RT  

 
Note that  u = f +Ts  so need to find s before u can be obtained. 
 

  

  

s = − ∂ f
∂T

⎛

⎝⎜
⎞

⎠⎟ v

= −α(1− ln T
Tr

−T 1
T

)+β(T −Tr )+ R ln v − b
vr − b

⎛

⎝⎜
⎞

⎠⎟

= α ln T
Tr

+β(T −Tr )+ R ln v − b
vr − b

⎛

⎝⎜
⎞

⎠⎟

 

∴  

  

u = α(T −Tr −T ln T
Tr

)− β
2

(T −Tr )2 − RT ln v − b
vr − b

⎛

⎝⎜
⎞

⎠⎟

+ αT ln T
Tr

+βT (T −Tr )+ RT ln v − b
vr − b

⎛

⎝⎜
⎞

⎠⎟

 

Hence 
  
u = α(T −Tr )+ β

2
(T 2 −Tr

2 )  

 

and  

 

cv =
∂u
∂T

⎛

⎝⎜
⎞

⎠⎟ v

= α +βT  

    
The molecular model is similar to that of an ideal gas, but with account taken of the 
‘excluded volume’ associated with the finite size of molecules. The internal energy is 
independent of v which implies no intermolecular forces. cv depends on T, which implies 
‘internal energy’ modes of the molecules (e.g., vibration), similar to the semi-perfect gas 
model. b is the excluded volume (per unit mass of gas) and vr and Tr are the reference 
specific volume and temperature at which f, u (and s) are zero. 
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(c) Assume the flow is adiabatic and neglect changes in KE and PE (the usual 
assumptions). Thus, flow through valve is isenthalpic. 

  h = u+ pv = u+ RT + pb = α(T −Tr )+
β
2
(T 2 −Tr

2 )+ RT + pb  

Note that h depends on p even though u is independent of v. 
 

Thus,  
  
β
2

T2
2 + (α + R)T2 =

β
2

T1
2 + (α + R)T1 + b( p1 − p2 )  

∴    0.0025 T2
2 +1.4 T2 = 0.0025× 4502 +1.4× 450+ 0.05×1000.  

∴    T2 = 463.57 K  

 

Now

  

  

s2 − s1 = α ln T2

T1

+β(T2 −T1)+ R ln v2 − b
v1 − b

⎛

⎝⎜
⎞

⎠⎟

= α ln T2

T1

+β(T2 −T1)+ R ln T2 p1

T1 p2

⎛

⎝⎜
⎞

⎠⎟

= 1.0ln 463.57
450

+ 0.005× (13.57)+ 0.4ln 463.57 ×50
450× 40

⎛

⎝⎜
⎞

⎠⎟

= 0.19872 kJ K−1kg−1

 

 
Lost power 

   
= !mT0(s2 − s1) = 0.75× 298.15× 0.19872 = 44.43 kW  

 
For ideal gas, T2 = T1 so   s2 − s1 = R ln( p1 / p2 ) = 0.4× ln(50 / 40) = 0.08926 kJ K−1kg−1   

 
Lost power 

   
= !mT0(s2 − s1) = 0.75× 298.15× 0.08926 = 19.96 kW  

 
 
Assessor’s comment: This was the least popular question. Most candidates succeeded in Part 
(a), though often with more algebra than anticipated.  In Part (b), many candidates derived 
the p-v-T relation but fewer were able to obtain the expression for cv (differentiation of a 
logarithmic function was a common error). Only a few candidates identified that the flow 
through the valve in Part (c) is isenthalpic.  
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Q2. (a) The reaction is exothermic 
   
Δ !H0

T < 0( ) hence ln Kp increases with (1/T) and 

therefore Kp decreases with T (this is also obvious from the tabulated values of ln Kp in the 
databook). Assuming ideal gas relations, 

    
  

PNH3

P0

⎛

⎝⎜
⎞

⎠⎟

+1
PN2

P0

⎛

⎝⎜
⎞

⎠⎟

−1/2
PH2

P0

⎛

⎝⎜
⎞

⎠⎟

−3/2

= K p (T )     (1) 

Thus an increase in T (reduction in Kp) causes a reduction in the partial pressure of NH3 an 
increase in the partial pressures of N2 and H2 – i.e., the reaction shifts to the left hand side as 
T increases. Explanation by “Le Chatelier” principle also OK. 

 
(b) The reaction may be written: 
 
      

1
2 N2 + 3

2 H2 → x NH3 + y N2 + z H2  

 
Conservation of N: 1 = x + 2y  ⇒   y =

1
2 (1− x)  

Conservation of H: 3 = 3x + 2z  ⇒   z =
3
2 (1− x)  

Total no. of kmols:   n = x + y + z = 2− x  

 

Using (1):   
  

x
n

⎛

⎝⎜
⎞

⎠⎟

+1
y
n

⎛

⎝⎜
⎞

⎠⎟

−1/2
z
n

⎛

⎝⎜
⎞

⎠⎟

−3/2
P
P0

⎛

⎝⎜
⎞

⎠⎟

−1

= K p (T )  

∴    

  

x
1
2 (1− x){ }1/2 3

2 (1− x){ }3/2 =
1
n

P
P0

K p (T )  

 

Ideal gas relations: 
   
PV = n !RT ; P0V = 2 !RT0 ⇒

P
P0

=
n
2

T
T0

 

 

∴    
  

x
(1− x)2 =

27
8

K p (T ) T
T0

i.e., C =
27
8

   (2) 

 
(c)  1st Law:    Q −W = ΔU = 0     [Note: U is constant, not H) 
∴      H p − PV = HR − P0V     

∴    
  

H p − H p
0( ) = HR − HR

0( )− H p
0 − HR

0( ) + PV − P0V( )  

∴       n
!Cp (T −T0 ) = 0− xΔ !H0

T0 + n !RT − 2 !RT0   
∴    (2− x)( !Cp − !R)(T −T0 ) = −x(Δ !H0

T0 + !RT0 )  

∴    
   
T = T0 −

x(Δ !H0
T0 + !RT0 )

(2− x)( !Cp − !R)
      (3) 
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To find Kp at 500 K we need to interpolate in (1/T). From the data book, 
 

  

  

ln K p (500) = ln K p (400)+
1

500 −
1

400
1

600 −
1

400

{ln K p (600)− ln K p (400)}

= 1.778+ 0.6× (−3.191−1.778)
= −1.2034

 

 
∴    K p = 0.30017  

 
Rearranging (2) gives: 
 

 
  
Fx2 − (2F +1)x +1= 0 ⇒ x =

2F +1± 4F +1
2F

where F =
27
8

K p
T
T0

 

Substitution for Kp and T gives x = 0.20608  (the other root is > 1) 
 
Substitution in (3) then gives:  
 

  
  
T = 298.15− 0.20608× (−45900.+8.3145× 298.15)

(2.0− 0.20608)× (33.0−8.3145)
= 500.22 K   

 
Thus T ≈ 500 K is consistent with solution to both (2) and (3). 
 
(d) Doubling the pressure by the addition of an inert gas will not affect the partial 
pressures of NH3 , N2 and H2 , hence x remains at 0.206 kmol. (Note that this is in contrast to 
doubling the pressure by reducing the volume, for which the equilibrium would shift to the 
right).  
 
 
Assessor’s comment: Part (a) and (b) was well answered. The process in Part (c) is at 
constant volume and so is at constant internal energy (not constant enthalpy). Part (d) was 
answered incorrectly by almost all candidates. 
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Q3. (a) Cooling the turbine allows an increased turbine entry temperature (TET). For an 
ideal Joule cycle, the cycle efficiency is only a function of pressure ratio so that increasing 
the TET does not affect the cycle efficiency but does increase the specific work output. For a 
real cycle, with irreversible turbomachinery, raising TET increases cycle efficiency as well 
as specific work output. An increased specific work output will either result in more power 
output for a fixed gas turbine size (fixed massflow) or a smaller (cheaper) gas turbine for a 
given power output . 
 
(b)(i) 
Let the temperature of the air extracted from the compressor be Tc, and the temperature of 
the main turbine flow when the coolant is added be Tt 

Tc
T1

=
αrp p1

p1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

γ−1
γη

= αrp( )
γ−1
γη

= 2.411
Tc = 718.9 K  

and 

T3

Tt
=
rp p1

αrp p1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

(γ−1)η
γ

=
1
α

⎛

⎝
⎜

⎞

⎠
⎟

(γ−1)η
γ

Tt =T3α
(γ−1)η
γ

Tt =T1θα
(γ−1)η
γ

Tt
T1

= 4.721

Tt =1407.6 K

    . 

 

The steady flow energy equation then gives the mixed out temperature, 
Tm =mTc + (1−m)Tt

=1338.8 K  
 

(b) (ii)  
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The temperature of the mixed out flow must always be Tm. If the mixing takes place at 

constant pressure, the entropy of the mixed out flow is, 

sm − s1 = cp ln
Tm
T1
− R ln pm

p1  . 

If the coolant and mainstream flows are combined by a process that is fully reversible, “FR”, 

the mixed out entropy would be, 

 
sFR − s1 =m(sc − s1)+ (1−m)(st − s1)

=m cp ln
Tc
T1
− R ln pm

p1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟+ (1−m) cp ln

Tt
T1
− R ln pm

p1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=mcp ln
Tc
T1
+ (1−m)cp ln

Tt
T1
− R ln pm

p1

 

and 

sm − s FR= cp ln
Tm
T1
−mln Tc

T1
− (1−m)ln Tt

T1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  . 

 

The lost work, as a fraction of the turbine work without cooling is given by 

 
wlost
wt ,no cool

=
T1(sm − sFR )

cpθT1 1− 1
rp

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(γ−1)η
γ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
ln(4.490)−0.1× ln(2.411)−0.9× ln(4.721)

5×0.537
= 0.63%
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(b)(iii) 

wt
wt ,no cool

=
cp (1−m)(T3 −Tt )+ (Tm −T4' )( )

cpθT1 1− 1
rp

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(γ−1)η
γ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=

(1−m) θ −
Tt
T1

⎛

⎝
⎜

⎞

⎠
⎟+
Tm
T1

1− 1
αrp

(γ−1)η
γ

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

θ 1− 1
rp

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(γ−1)η
γ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
0.9× (5− 4.721)+ 4.490× (1−0.490)

5×0.537
= 0.946

 

 

(c) It is not normally possible to extract the flow from the compressor at the same pressure as 

the flow in the turbine where the coolant will be added. Hence, the flow is extracted from the 

compressor at a higher pressure and throttled (entropy creation due to irreversibilities) to the 

desired pressure. When the coolant is ejected into the turbine, the kinetic energy (neglected 

in the above analysis) of the coolant will be dissipated (entropy creation due to 

irreversibilities). 

 

Assessor’s comment: Part (a) was well answered. Most candidates had little difficulty in 

identifying the mixed out temperature in Part (b). Many candidates interpreted the “lost work 

in the mixing process” as the change in turbine work output with cooling rather than the 

expected T0Δsmix .  
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Q4. (a) 

 
 
The boiler pressure of 60 bar means the maximum steam temperature is 275 deg C. This is 
low compared to fossil-fired steam plane (boiler pressures of  > 160bar). The nuclear reactor 
is cooled by high pressure water. To prevent boiling, the water in this “primary circuit” is 
limited to a maximum temperature of approximately 300 deg C and this places the limit on 
the steam cycle (“secondary circuit”) temperature. Without reheat, the expansion to the 
condenser would lead to intolerably wet steam (low LP turbine efficiency and erosion of the 
turbine blades). 
 
parts (b), (c) and (d) use the following location numbers: 
1 – condenser exit, 2 – feed pump exit,  3 – HP turbine inlet, 
4 – HP turbine exit, 5 – LP turbine inlet, 6 – LP turbine exit. 
 
(b) At HP turbine inlet, from the saturation tables: h3 = 2784.6 kJ/kg and s3 = 5.890 kJ/kg K. 
 
At HP exit (10 bar):  s4f = 2.138 kJ/kg K;  s4g = 6.585 kJ/ kg K; 
    h4f = 762.5 kJ/kg;  h4g = 2777.1 kJ/kg. 
 
Dryness fraction, x, if the HP turbine were isentropic 

s = 5.890 = x(6.585− 2.138)+2.138
x = 0.844

 

and 
h4s = 762.5+ x(2777.1−762.5)

= 2462.2 kJ/kg
 

The isentropic efficiency is 0.85, 
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0.85=
wHP

2784.6− 2462.2
⇒ wHP = 274.0 kJ/kg   and  h4 = 2510.6 kJ/kg

 

 
(c) SFEE for the reheater: 

(1−m)(h5 − h4 ) =mh3 fg
(1−m)(2943.1− 2510.6) =1570.7m

(1−m) = 3.632m
m = 0.216

 

 
(d) The maximum work is given by the difference in the availability functions at LP turbine 
inlet (station 5) and feed heater exit (station 2’), assuming that the condenser is at the dead 
state temperature. 

wLPmax = b5 −b2'

= (h5 −T1s5)− (h2' −T1s2' )

= (h5 − h2' )−T1(s5 − s2' )

= (2943.1−852.3)−302.11× (6.9265− 2.331)
= 702.5 kJ/kg

 

 
The cycle efficiency is then given by 

ηc =
(1−m)(wHP +wLPmax )

(h3 − h3 f )+ (1−m)(h3 f − h2' )

=
(1−0.216)× (274.0+702.5)

(2784.6−1213.9)+ (1−0.216)× (1213.9−852.3)

=
765.6

1570.7+ 283.5
= 0.413

 

(Note that the total flow is heated from 3f to 3, but that the flow in the turbines and between 
2’ and 3f is reduced by the fraction m). 
 
(e) AGR reactors are cooled by carbon dioxide gas. This removes the temperature restriction 
placed on the primary circuit of a PWR reactor. The steam cycle is then similar to a 
conventional fossil-fired station – 160bar boiler pressure with 40 bar reheat. This gives 
improved steam cycle efficiency. 
 
Assessor’s comment: Candidates found Part (a) and (b) straightforward, although a minority 
attempted, incorrectly, to use the perfect gas relations. Candidates who were able to keep 
track of the m and (1-m) terms in Part (c) obtained the correct answer but relatively few 
correctly negotiated the availability question in Part (d).    

  AJW / GP 
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