
Question 1 Mass diffusion through sensor

Solution (a)(i) In steady state, the diffusion flux across the layer must be equal to the convection
rate and to the reaction:

j = hm(cb − cs) =
D

δ
(cs − cc) = Ω = Acc

cb − cs
1/hm

=
cs − cc
δ/D

= Acc

cb − cs = Ω/hm = Acc/hm

cs − cc = Ωδ/D = Accδ/D

cb − cc = Acc(
1

hm
+
δ

D
)

cc = cb
1

1 +
A

hm
+
Aδ

D

cs = cb −
A

hm
cc = cb(1−

A

hm

1

1 +
A

hm
+
Aδ

D

) = cb

1 +
A

hm
+
Aδ

D
− A

hm

1 +
A

hm
+
Aδ

D

cs = cb
1/A+ δ/D

1/A+ 1/hm + δ/D

The main problem students encountered in setting up this problem is recognising the difference
between a flux in steady state and a rate in the form of an unsteady term. Keep in mind that this is
the same as a steady state heat transfer problem, so it can be handled via the circuit analogy. The
second thing to keep in mind is that, although we do not know yet what the concentrations are, we are
looking for relationships between the concentrations – in this case there are two, at the two interfaces,
so that one can eliminate the intermediate value of cs as an unknown.

(a)(ii) We can now use this expression to determine the flux:

j = Acc = cb
A

1 +A(1/hm + δ/D)
= cb

1

1/A+ 1/hm + δ/D

When A is much smaller than the diffusion and convection terms, we have:

cc ≈ cs ≈ cb j = Acb

and the overall flux is controlled by the rate of reaction.

When A is much larger than the diffusion and convection terms, we have:

cc → 0 cs = cb
δ/D

1/hm + δ/D
j =

D

δ
cs = cb

1

1/hm + δ/D

and the overall flux is controlled by the rate of diffusion.
(b)(i) The response time is given by the diffusion time through the layer of thickness δ:

τ = δ2/D

This is the easiest part of the problem! Diffusion times can always be estimated in this manner, to
the order of magnitude.
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(b)(i)
∂c

∂t
= D

∂2c

∂x2

Substituting the given equation, we have:

∂

∂t
[Cn exp(−k2nt/τ) sin(knx/δ)] = Cn sin(knx/δ)(−k2n)

D

δ2
exp(−k2nτ)

∂

∂x
[Cn exp(−k2nt/τ) sin(knx/δ)] = Cn(kn/δ) exp(−k2nτ) cos(knx/δ)

∂2

∂x2
[Cn exp(−k2nt/τ) sin(knx/δ)] = Cn(−k

2
n

δ2
) exp(−k2nτ) sin(knx/δ)

so that, for each term:

Cn sin(knx)(−k2n)
D

δ2
exp(−k2nt/τ) = DCn(−k

2
n

δ2
) exp(−k2nτ) sin(knx/δ)

Clearly, the solution agrees with the necessary equation.

(b)(ii)The boundary condition at x = 0 is:

Cn exp(−k2nt/τ) sin(kn0) = 0

is satisfied automatically, and that at x = δ

Cn exp(−k2nt/τ) sin(kn) = cs1

can be satisfied by taking kn = π(n + 1/2) for a non-zero value, the values of Cn can be worked out
via a Fourier transform of the step function.
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Question 2 Heat exchanger

A simple progressive question, that tripped up students, as the geometrical setup was perhaps a
little difficult to explain. Most students worked out the log mean temperature and the relationship
with heat flux. Problems appeared in accounting correctly for the flux through the fins, which required
a simple multiplication by the appropriate area and efficiency. The last part was duly challenging and
was only attempted by a few.

Solution (a) The heat transfer from air at a temperature T to a surface at Ts across a resistance U
over an area W dx is:

dqo = UW (T − Ts) dx = −ṁcpdT = −ṁ(T − Ts)
d(T − Ts)
T − Ts

= −UWL

ṁcp
dx

ln
(Th,o − Ts)
(Th,i − Ts)

= −UWL

ṁcp

qo = ṁcp(Th,i − Th,o) = −
UWL(Th,i − Th,o)

ln
(Th,o − Ts)
(Th,i − Ts)

= UWLθl

where the resistance is:
1/U = 1/h+ (δ/2)/λ

Figure 1: unit element

(b) Considering the unit symmetry element in Fig. 1, we can see that the total heat transferred from
the air to the surface is the sum of the heat directly transferred to the surface of the heat exchanger
over the area (W − δ)L, plus the heat transfer through the fins over area δL. The latter can be
considered as the heat transfer over δL, enhanced by the effectiveness η.

q = qbase + qfin = qo
(W − δ)L
WL

+ qoη
δL

WL
= qo[1−

δ

W
+

δ

W
η] = qo[1 +

δ

W
(η − 1)]

The length of the fins (symmetric about top and bottom) is Lf = H/2, the cross sectional area of
the (half) fins, Ac/2 = δL/2, so that the total cross sectional area of the fin is Ac = δL. The wetted
perimeter of the fins is Pf = 2L (both sides). The fin efficiency can be calculated as:

m =
√
hPf/(λAc) =

√
h2L/(λδL) =

√
2h/λδ

η = tanh(
√

2h/λH/2)/(
√

2h/λδH/2)

The total heat transfer rate in one unit is therefore:

qu = qo[1 +
δ

W
(η − 1)] = UWLθl[1 +

δ

W
(η − 1)]
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where the parameters can be substituted above.

The typical confusion in the solutions related to how to treat the fins relatively to the surface. In
general, marking was generous, so that small deviations in interpretation were considered acceptable
answers.

(c)
For N channels, the heat transfer is N times qu for each unit, times 2 for each of the ends of the

stack:

Q = 2Nqu

(d)
We consider the heat exchange for a unit stack of width and length W , but now between the hot

and cold gases.

∆qu = −ṁcp∆Th = +ṁcp∆Tc = U ′W 2[1 +
δ

W
(η − 1)]U ′(Th − Tc)

Since the heat capacities of each stream are identical, we have ∆Th = −∆Tc. The heat transfer
coefficient is given by:

1

U ′
=

2

h
+ 2

δ/2

λ
=

2

U

U ′ =
U

2

We can now solve for the evolution in the temperature difference, which will be the same in the
two directions.

∆(Th − Tc) = −U ′W 2[1 +
δ

W
(η − 1)](Th − Tc)

If the initial conditions are known, the equation can be integrated at the limit of small W 2 as a
differential in the two directions.
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Question 3 Hot film sensor

Boring but popular question. The first part on the calculation of the mean Nusselt number tripped
many students (all but one), even though the definition was given. The second part involved calculat-
ing numerical values for Re and Nu, which was straight forward, and the third item required sketching
the momentum and thermal boundary layers. About half of the students got it right, the other half
got it backwards or did not recognize the role of Pr. The final item required an evaluation of the
assumptions for the flat plate, which few attempted, but sensible answers were also given.

Solution
(a)

The heat transfer coefficient hx = λNux/x = λCRemx /x = λC(U/ν)mxm/x. The mean heat
transfer coefficient over a length L is:

hL =
1

L

∫ L

0
λC(U/ν)mxm−1 dx =

λC(U/ν)mLm

mL
=
λNuL
m

NuL = hLL/λ = NuL/m

For the laminar case,

NuL = (2)0.332Pr1/3Re
1/2
L

For the turbulent case,

NuL =
5

4
0.0385Pr1/3Re

4/5
L

If the transition to turbulence takes place at `, we must calculate the convection coefficient ac-
cordingly:

hL =

∫ `

0
λC(U/ν)mxm−1 dx+

∫ L

`
λC(U/ν)m

′
xm

′−1 dx

=
λNu`,l
m

+
λNuL,t
m′

−
λNu`,t
m′

NuL =
hLL

λ
=
Nu`,l
m

+
NuL,t
m′

−
Nu`,t
m′

(b)
Property Air Water

µ (kg/m·s) 17.9 ×10−6 1.15 ×10−3

ρ (kg/m3) 1.22 1000
ν (m2/s) 1.47×10−5 1.15 ×10−6

Pr (-) 0.70 8.12

which yields the following results

Air Water

Case A B C D
U (m/s) 1 10 1 10

ReL (-) 34 3401 435 43478
NuL 1.7 17.2 13.9 397 (t)
Nu`,t 123
Nu`,l 66.7

NuL 3.4 34 28 477

Most inaccuracies in the exam came from the reasonable assumption that the mean Nu can be
calculated from the direct integration. However, because of the definition of Nu and its dependence
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on distance, this is somewhat different than the final result here. Nevertheless, most of the credit
was given if the general understanding was correct regarding the averaging of Nu when there is a
transition.

(b) We have:

q = L(Th − T∞) = λNuL/L = CUm

∆q

q
= m

∆U

U
∆U

U
=

1

m

∆q

q

where m = 1/2 for laminar and 4/5 for turbulent flow. Therefore, the sensitivity is larger for laminar
than turbulent flow, and so is the uncertainty multiplier.

(c) The sketch should have the appropriate labelling of the gradients at wall and zero gradient at the
boundary layer, the thickness of the boundary layer, and the relative magnitudes. In particular, we
note that the momentum and thermal boundary layer thickness decrease with increasing Reynolds
and Nusselt number, and that the momentum boundary layer is thicker than the thermal boundary
layer when Prandlt number Pr = ν/α is larger than unity. The figure below is illustrative.

x
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x
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D
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D
C�

Figure 2:

(d) The derivations use the assumption of a thin boundary layer relative to the length of the system,
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which clearly fails a the leading edge, and in the present case, also at the trailing edge for the lowest
velocity case, since the boundary layer thickness for 1 m/s for air is 1 mm, for a sensor 5 mm in length.
However, for the other cases the estimate shows that the boundary layer is indeed very thin and that
the analysis holds up. Ways around the limitation are: (i) full numerical calculations, (ii) calibration,
(iii) measurement of drag and use heat and momentum transfer analogy.

7



Question 4 Quarter cylinder slab

Most attempts successfully derived the appropriate differential equation from scratch, and went
on to integrate and apply the appropriate boundary conditions in the second part. Although most
students did discretise and analyse how to solve it, in most cases there was a certain level of sloppiness
in taking into account the changing radius. However, much of which was given credit if the overall
picture was adequately addressed.

(a) We consider the steady energy equation for a differential element dr × r dθ × dz:

∂E

∂t
= qrr dθ dz − qr+dr(r + dr) dθ dz + qθ dr dz − qθ+dθ dr dz+

+qz dr r dθ − qz+dz dr r dθ + ġ dr r dθdz = 0

qrr dθ dz − [qrr +
∂

∂r
(rqr)dr] dθ dz + qθ dr dz − [qθ +

∂qθ
∂θ

dθ] dr dz

+qz dr r dθ − [qz +
∂qz
∂z

dz] dr r dθ + ġ dr r dθdz = 0

1

r

∂

∂r
(qrr) +

1

r

∂qθ
∂θ

+
∂qz
∂z
− ġ = 0

1

r

∂

∂r
(−λr∂T

∂r
) +

1

r

∂

∂θ
(−λ

r

∂T

∂θ
) +

∂

∂z
(−λ∂T

∂z
)− ġ = 0

1

r

∂

∂r
(r
∂T

∂r
) +

1

r2
∂2T

∂θ2
+
∂2T

∂z2
+
ġ

λ
= 0

(b) We have a solution that depends only on r, so that:

1

r

∂

∂r
(r
∂T

∂r
) = − ġ

λ
∂

∂r
(r
∂T

∂r
) = − ġ

λ
r

r
∂T

∂r
= − ġ

λ

r2

2
+A

∂T

∂r
= − ġ

λ

r

2
+
A

r

T = − ġ
λ

r2

4
+A ln r +B

Applying the boundary conditions of symmetry at r and convection at R, we have:

A = 0

−λ∂T
∂r

∣∣
r=R

= ġ
R

2
= h(T (R)− T∞)T (R) = ġ

R

2h
+ T∞

T (0) = T (R) +
ġ

λ

R2

4
= B

T = T∞ + ġ
R

2h
+
ġ

λ

R2

4
(1− r2

R2
)

(c) Now we consider different conditions, and azimuthal symmetry no longer applies. (i) Assuming a
separable solution, we have T = R(r)Θ(θ). The differential equation can be expressed as :

8



Θ
1

r

∂

∂r
(r
∂R

∂r
) +R

1

r2
∂2Θ

∂θ2
+
ġ

λ
= 0

The possible solutions are series solutions, starting from the homogeneous solutions, and using
these to obtain a particular solution.

(d) We seek a discretization of the differential equation:

1

r

∂

∂r
(r
∂T

∂r
) +

1

r2
∂2T

∂θ2
+
ġ

λ
= 0

with the gradient specified at the boundary. We specify cell enters at points i, j corresponding to r
and θ. The discretisation of the gradients reads, for a first order differencing scheme:

1

r

∂

∂r
(r
∂T

∂r
) ≈ 1

ri

1

∆r

[
ri+1/2,j

∂T

∂r

∣∣∣∣
i+1/2,j

− ri−1/2,j
∂T

∂r

∣∣∣∣
i−1/2,j

]
=

1

ri,j

1

∆r

[
ri+1,j + ri,j

2

Ti+1,j − Ti,j
∆r

− ri,j + ri−1,j
2

Ti,j − Ti−1,j
∆r

]
=

1

2

1

∆r2

[
(
ri+1,j

ri,j
+ 1)Ti+1,j − (

ri+1,j

ri,j
+
ri−1,j
ri,j

+ 2)Ti,j + (
ri−1,j
ri,j

+ 1)Ti−1,j

]
1

r2
∂T

∂θ
≈ 1

r2i

1

∆θ2

[
∂T

∂θ

∣∣∣∣
i,j+1/2

− ∂T

∂θ

∣∣∣∣
i,j−1/2

]
=

1

r2i,j

1

∆θ2
[Ti,j+1 − 2Ti,j + Ti,j−1]

For the internal points, we have therefore, after collecting terms:

1

2

1

∆r2

[
(
ri+1,j

ri,j
+ 1)Ti+1,j − (

ri+1,j

ri,j
+
ri−1,j
ri,j

+ 2)Ti,j + (
ri−1,j
ri,j

+ 1)Ti−1,j

]
+

1

r2i,j

1

∆θ2
[Ti,j+1 − 2Ti,j + Ti,j−1] = 0

1

2

1

∆r2
(
ri−1,j
ri,j

+ 1)Ti−1,j − [
1

2

1

∆r2
(
ri+1,j

ri,j
+
ri−1,j
ri,j

+ 2) +
2

r2i,j

1

∆θ2
]Ti,j+

1

2

1

∆r2
(
ri+1,j

ri,j
+ 1)Ti+1,j +

1

r2i,j

1

∆θ2
Ti,j−1 +

1

r2i,j

1

∆θ2
Ti,j+1 = 0

For the boundary points, we can discretise using forward differentiation for the gradient condition
at θ = 0(j = 1) and θ = π/2(j = M):

−λ
r

∂T

∂θ
= h(T − T∞)

− λ

ri,1

Ti,2 − Ti,1
∆θ

= h(Ti,1 − T∞)

−λ
r

∂T

∂θ
= h(T − T∞)

− λ

ri,N

Ti,M − Ti,M−1
∆θ

= h(Ti,M − T∞)
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And for the circular boundary i = N :

−λ∂T
∂r

= h(T − T∞)

−λ
TN−1,j − TN,1

∆r
= h(TN,j − T∞)

Each one of the discretized equations defines a linear system involving the temperatures at each
node, such that AT = B, which can be solved by standard methods.

10


