
Worked solutions 

Semiconductor Engineering 3B5 Examination 2016 

 

Question 1 

(a) Take the time-dependent Schrödinger equation and substitute in the functions 

for      and       : 

 
  

  

   

   
      

 

  
  

  
  

  

  

   
        

   

  
             

  
  

 
        

   

  
             

   
 

  
        

   

  
              

 

  
  

  

 

  
    

   

 
       

   

  
      

  

 
       

   

  
    

               
   

  
     

 

  
  

  
   

   

 
       

   

  
       

   

 
 

 

     
   

  
    

  
  

 
       

   

  
             

   

  
     

  
  

  
   

   

 
     

   

 
 

 

   
  

 
    

  
  

  
  

   

 
  

  

  
   

   

 
 

 

  
  

 
    

 
   

   
 
  

  
   

   

 
 

 

  
  

 
    

 
   

   
  

  

 
  

  

 
    

 
  

   
   

 [30%] 



(b) The time-dependent part is characterised by frequency  
  

   
 . 

In terms of cycles per second, the frequency is given by   
    

  
. 

 

The energy is calculated from the de-Broglie–Einstein relationship: 
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There is an alternative way of calculating the total energy. This assumes that the 

potential energy      is zero (i.e. by evaluating at x = 0) and the total energy equals the 

kinetic energy. We then use the kinetic energy operator    
  

  

  

   
 on the wave 

function   . This will also yield 
   

   
. 

 [10%] 

 

(c) The uncertainty in the electron’s position is given by  

 

                 
 

Heisenberg’s uncertainty principle is given by  

 

     
 

 
 

    
 

   
 

 

             
 
           

 
 

 

This allows the minimum kinetic energy, T, of the electron to be calculated: 

  
  

  
 

      
     

  
 

 

  
 
           

 
 

 

 
     

  
 

 

In part (ii) we calculated the ground state energy as     
    

 
. This is higher than the 

minimum kinetic energy T, and therefore entirely compatible with the uncertainty 

principle. The momentum of the electron will always be above the minimum required 

by the Heisenberg uncertainty principle. 

 

 [20%] 

(d) The quantum mechanical effect of tunnelling means that the electron’s wave 

function can extend beyond the boundaries of the well even if the energy of the 

state is lower than the energy of the barrier. 

 



 
 [25%] 

(e) As the wells are brought closer, the wave functions of the highest occupied 

energy levels spatially extend across the two wells. The Pauli exclusion 

principle is invoked which states that two electrons cannot exist in the same 

state. Their wave functions therefore become perturbed and their energy levels 

split into two. 

 [15%] 

Question 2 

(a) Boltzmann statistics apply when multiple particles can exist in the same state. 

Electrons, however, obey the Pauli exclusion principle, which states that no two 

electrons can occupy the same quantum mechanical state. In this case, 

Boltzmann statistics are not appropriate and Fermi-Dirac statistics should be 

used. Fermi-Dirac statistics account for the fact that electrons tend to occupy the 

lowest available energy state, and (because no two electrons can occupy the 

same state) that the electrons are forced to occupy higher and higher energy 

levels as the lower energy levels fill up. For low probability of occupation 

(E>>EF) the Fermi function approaches a Boltzmann distribution.  

 

From a physicist’s perspective, electrons are “fermions” with half-integer spin. 

Fermions obey the Pauli exclusion principle, and hence follow Fermi-Dirac 

statistics. 

 [15%] 

 

(b) Above zero Kelvin, we consider the Fermi energy to be the energy at which 

there is a 50% probability that a state is occupied. (This is actually an 

approximation that is valid provided EF>>kT.)  

 

At zero Kelvin, the Fermi energy is the highest occupied energy level. [15%] 

(c)  

p is the number density of holes in the VB: 

  
 

 
          
  

  

   

 
 

 
             
  

  

   



If          , then we may again use the Boltzmann distribution as an 

approximation for the Fermi function, so: 

        
    
  

 
 

Substituting gives: 

  
 

 
          
  

  

   

 
 

 
 

 

     
    

  
 
       

 
   

    
  

 
  

  

   

  
    

  
 
 

     
      

 
  
 
    
  

 
  

  

   

  
    

  
 
 

     
      

 
  
 
               

  
 

  

  

   

To solve this, we substitute         
 
 , so: 

  
    

  
 
 

     
 
 
        

  
 
   

 
   

  
 
  

 

 

   

and use the standard integral to obtain: 

  
    

  
 
 

     
 
 
        

  
  

 
        

   
  
   

    
 

 
 

 
 
        

  
 
 

This can be rewritten to give: 

     
 
        

  
 
 

where 

     
  
   

    
 

 
 

 

 [30%] 

 

(d)  
(i)  

Due to electrical neutrality of the semiconductor, we can write: 

                    
 

Assuming that there are no donors (          , that the number of electrons 

generated due to thermal excitation for the VB to the CB is negligible (   ), and that 

all Zn acceptors are fully ionised at 290 K (    ), we obtain: 

 

     
 



Rearranging      
 
        

  
 
 and substituting      gives  
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     meV [15%] 

(ii)  

 
 

The semiconductor now contains both acceptors and donors. When the donors are 

ionised, their electrons are released. These electrons fall into the acceptor states. This 

ionises the acceptor without yielding a free hole in the valence band. The resulting hole 

density is approximately equal to the difference between the acceptor and donor 

concentration. 

 

Due to electrical neutrality of the semiconductor, we can write: 

                    
 

Assuming that all donors are ionised (                , that the number of 

electrons generated due to thermal excitation for the VB to the CB is negligible, and all 

Zn acceptors are fully ionised at room temperature (              ), we 

obtain: 

                    
                       

                     
          

 

Now,  
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Solving the quadratic equation gives 

   
        

 
  

                      

 
 

         cm
-3 

 

The resulting hole density is approximately equal to the difference between the acceptor 

and donor concentration. This is the majority carrier density. 

 

     
  

   
  
 

 
 
           

      
   

 

The minority carrier density is essentially zero. [25%] 

 

 

Question 3 

(a) (i) 

 [10%] 

(ii)  FCSC EEeeVeΦ  2.4  

Hence   eVEE FC 15.0  

Assuming all donor atoms are fully ionised : 

           
     
  

              
     

     
               

 [20%] 

(iii) Built-in (contact) potential can be measured by CV measurements in reverse bias 

(see 3B5 lab and 3B5 example paper 3 - Q3) or for instance photothermal 

measurements. Note it cannot be directly measured with voltmeter. 

 [10%] 

(b) (i) 

 [10%] 



(ii) VVVV SCMB 85.005.49.4    [10%] 
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(c) (i) The work function of the metal is larger than that of the n-type Si, hence a built-

in potential forms that drops across the oxide, but a proportion will be taken up in band 

bending in the Si, and this will induce a depletion at the Si/oxide interface  

 

 

(c)(ii) 
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where Ci is the oxide capacitance per unit area, Qd is the charge per unit area in the 

depletion region at strong inversion   2
1

0max 2 fDrDd VeNweNQ  and eVf is the 

difference between EFn and EFi 

(as defined in 3B5 lecture notes). [15%] 

 

Question 4 

(a) For the one-sided p-n junction the depletion region may be considered to be 

basically entirely in the (lower doped) n-type region. The Poisson equation states 

 

 

 

This assumes abrupt junction model, and donors to be fully ionised. 

 

Given that V only varies in the x direction across the junction this becomes 

 

 

 

Assuming that there are no electric fields outside the depletion region, i.e. the E-field 

is 0 at x=w (whereby w is the width of the depletion region), integration gives 

 

 

 

Integration again with the boundary condition that V=0 at x=0 gives 

 

r

D

r

eN
V





00

2 





Dr eN
x

V


2

2

0
d

d


 xw
eN

dx

dV

r

D 
 0



 

 

which may be evaluated at x=w to give the contact potential 

 

 

 

Rearranging gives 

 

 [30%] 

 

(b) Junction capacitance 
wVd

Qd
C
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For Cd to double, w needs to half. Hence forward bias Va is required (positive terminal 

connected to p-side) 
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Hence for w to half, 0
4

3
VVa   [20%] 

 

(c)  
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(d)  
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 [15%] 

 

(e) A so-called high electron mobility transistor (HEMT) uses as channel a wide 

bandgap doped semiconductor (here the AlGaAs) with a thin, intrinsic/low doped 

semiconductor (here GaAs). The electron mobility of GaAs is much higher than its hole 

mobility, so the AlGaAs would be n-doped to form a heterojunction with an 

accumulation of electrons in the GaAs layer. This allows a MESFET channel that has 

high mobility as well as high carrier density. 

 [20%] 

 

 

 


