
 1

2017 IIA 3D5 - Water Engin1eering Dr D. Liang 
 

1.  
(a)  
 The total infiltration during the storm is:  
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 The excess rain is: 20-7.057 = 12.943 mm 
 The total volume of the excess flow is: 129.431011012.943 43    m3 
 
 It is necessary to change the time step of the unit hydrograph.  
 The S-curve (2-hour periods) is:  
  Time (h) 0 1 3 5 7 9 11 
  Percentage 0 5 25 55 95 100 100 
 Plot the S-curve:  
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 Read its values with a 1-hour period; construct the 1-hour unit hydrograph; calculate the 

flow rate contribution by each hour of the rainfall:  
Time (h) 0.0 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 
S-curve (%) 0.0 2.0 9.0 19.0 31.0 46.0 65.0 87.0 98.5 100. 100 100 
1-hour shifted S-
curve (%) 0.0 0.0 2.0 9.0 19.0 31.0 46.0 65.0 87.0 98.5 100 100 
 Subtract the 2 
S-curves (%)  0.0 2.0 7.0 10.0 12.0 15.0 19.0 22.0 11.5 1.5 0.0 0.0 
Flow volume of 
the storm (m3) 0.00 2.59 9.06 12.94 15.53 19.41 24.59 28.47 14.88 1.94 0.00 0.00 
Flow rate (l/s) 0.00 0.72 2.52 3.60 4.31 5.39 6.83 7.91 4.13 0.54 0.00 0.00 
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 Hence, the maximum flow rate is 7.91 l/s, which occurred 6 hours into the storm.  
  
 
(b) Other losses include surface retention, evaporation and transpiration. 
 
(c) The main assumption is the linearity. For example, doubling the excess rainfall doubles the 
runoff, without changing the shape of the hydrograph. It also assumes the rainfall to be uniform in 
space and time over the catchment.  
 
(d.i) First, calculate h1 according to the uniform flow theory.  
 According to the Manning formula:  
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 1.11 m is a solution to the above equation.  
 
(d.ii) According to the energy equation between cross section 1 and cross section 2:  
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  Solve this cubic equation h2 = 1.56 m.  
 It can be easily proved that the flow is supercritical (Fr>1) in both section 1 and section 2.  
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(b) 

h1 h2 
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h1 h2 U1+C U2+C U1 

 
Stationary reference frame    Moving reference frame 
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(c) 
 

t 

t = 40 s 

h0 = 4 m, U0 = -1 m/s 
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  The positive characteristic starting from O divides the affected/unaffected regions. 

  Positive line OO1 is straight: OO ghU
dt

dx
  

    0.481.91
180

01 
Ox

  =>  55.9471 ox  m 

  Draw negative line through line B, according the –ve relationship: 

    481.92105.481.92 BU  => 922.0BU  m/s 

  Positive line BB1 is straight: BB ghU
dt

dx
  

    05.481.9922.0
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  =>  99.8601 Bx  m 

  Draw negative line through line C, according the –ve relationship: 

    481.921481.92 CU  => 1CU  m/s 

  Positive line CC1 is straight: CC ghU
dt

dx
  
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  In the direction of the flow (in the negative x axis direction),  
  the water depth rises from O1 to B1 over a length of:  
    947.55 – 860.99 = 86.56 m  
  the water depth drops from B1 to C1 over a length of:  
    860.99 – 736.99 = 124 m  
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3 (a)  

 The disturbance propagates at speed 
B

A
g . Based on the analyses shown in the figure, the 

disturbance generated downstream cannot propagate upstream into the supercritical region. Hence, 
the disturbance will accumulate into a finite-amplitude hydraulic jump.  
 

 
 
(b) The two axes of the Shields Diagram are particle Reynolds number and the Shields 
parameters. For conditions above the curve, sediment movement occurs. For conditions below the 
curve, sediment movement does not happen. The Shields curve describes the critical condition for 
the sediment movement to occur.  
 
(c.i) 
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 According to the Chezy formula:  bh SRCU 1  
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(c.ii) 

 From the parameters: a/h = 0.01, 606.0
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  I1 = 2.174,   I2 = -4.254  
 Also need the bed roughness height in calculating the suspended load.  
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(c.iii) This is a 2-D continuous release problem.  
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  Need to consider the image source.  
 For the real source, x = 100 m, y = 1.9 m;  
 For the image source, x = 100 m, y = 2.1 m.  
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4.   
 
(a)   
 
Assume Sf is uniform in the section and can be calculated using Manning’s equation with a water 
depth h = (0.6+0.67)/2 = 0.635 m: 
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From there we can solve for q =0.843 m2/s 
 
and we have Q = 0.843 × 3 = 2.53 m3/s 
 
 
(b) If rivers are narrow, then the horizontal shear caused by the river bank also contribute to the 
longitudinal dispersion.  
 If there are vegetations, then they increase the velocity non-uniformity and thus increase the 
longitudinal dispersion coefficient.  
 Rivers are often not straight, and there are secondary flows. The secondary currents increase 
the mixing of pollutant.  
 
 
(c.i) Static lift = 10 m.  

 Roughness height: 0005.0
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Q (litre/s) 0 10 20 30 40 50 60 70 80 
Pump (1200 rpm) 48 46 43 39.5 34 27.5 20 11 
U (m/s) 0 0.14 0.28 0.42 0.57 0.71 0.85 0.99 1.13 
Re 0 4.2E+4 8.5E+4 1.3E+5 1.7E+5 2.1E+5 2.5E+5 3.0E+5 3.4E+5 
  0 0.0235 0.0210 0.0198 0.0192 0.0188 0.0185 0.0183 0.0181 
System H (m) 10 10.4 11.4 13.0 15.2 18.0 21.3 25.3 29.7 

 
Plot the pump curve and system curve, which cross at the duty point:  
 Q1 = 59 l/s  
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(c.ii)  
 
 Plot the parabola through the origin and (QP = 70 l/s, HP = 25.3 m). It crosses the pump 
curve (1200 rpm) at:  
  Q2 = 61 l/s, H2 = 19.2 m 
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Comments on Questions 
 
Q1  Hydrology and steady open channel flows 
  For the rapidly open channel flow question (d.ii), a lot of candidates only showed that the 

given water depth (h2 = 1.56 m) satisfied the energy equation. However, another water depth 
(h2=2.11) also satisfies the energy balance. Strictly speaking, it needs to show that the flow 
is supercritical, which is the reason for the water level rise at the channel contraction.  

 
Q2  Uniform flow and unsteady flow 
  A lot of candidates found the tidal bore question (b) challenging. Although the question 

hinted “treating the bore as a moving hydraulic jump”, some candidates still solved the 
question in the stationary reference frame and applied the energy principle. Most candidates 
grasped the method of characteristics, but quite a few did not read part (c) carefully. Instead 
of the streamwise lengths for the water level rise and drop, they only calculated the distances 
of the peak water level and the nearby still water level from the river mouth.  

 
Q3 Sediment transport and pollutant transport 
  Most of the candidates could not explain why hydraulic jumps occur. Quite a few made 

futile attempts by drawing the specific energy vs. water depth curve, which was used in the 
lecture to explain the water level change over a hump. Candidates generally knew that the 
Shields curve describes the threshold motion of sediment, but very few remembered the 
horizontal axis of the Shields diagram. Several confused this diagram with Liu’s diagram. 
Some candidates calculated the suspended sediment transport over the entire water column, 
rather than between the specified levels. They then wrongly assumed that sediment transport 
was negligible between 1 m above the bed and the free surface. In this question, the 
sediment transport rate between 1 m and 3 m above the bed is slightly larger than that 
between 1 cm and 1 m above the bed. Almost all the candidates were aware of the method 
of images in the pollutant transport question, but some did not notice that the image source 
and the real source did not contribute equally to the concentration at the point of 
measurement.  

 
Q4 Gradually varied flow and pipe-pump system 
  Almost all the candidates were able to apply the correct equation to solve the gradually 

varied flow question, but some made the calculation over complicated and time-consuming. 
In plotting the system curve, some candidates assumed the rough turbulent flow regime to 
calculate the pipe friction coefficient, which was unnecessary and inaccurate. No one was 
totally correct in finding the new pump speed to achieve an increased flow rate. They were 
aware of the non-dimensional groups for pumps, but had difficulty to find the homologous 
(analogous) operating points.  
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