
Crib, 3F1 2015

1. a) Taking the z−transform on both sides of the difference equation (with zero initial
condition) gives zY (z) = 1/2Y (z) + U(z) +D(z). Rearranging yields

Y (z) =
1

z − 1/2
U(z) +

1

z − 1/2
D(z)

b) Similarly, we get zU(z) = aU(z)− 1/4Y (z) or

U(z) =
−1/4

z − a
Y (z)

c) The closed-loop transfer function from D(z) to Y (z) is given by Y = GU + PD =
GKY + PD. Rearranging and replacing from above gives

Y =
P

1−GK
D =

1
z−1/2

1 + 1
z−1/2

1/4
z−a

=
z − a

(z − 1
2)(z − a) + 1

4

d) To start, assume that we pick a value for a that results in a stable closed-loop system
(or otherwise, yk would be unbounded). If dk is a step, then

D(z) =
z

z − 1

The output is given by Y = MD. Under the assumption that M is stable, the final
value theorem gives

lim
k→∞

yk = lim
z→1

(z − 1)Y (z) =
1− a

(1− 1
2)(1− a) + 1

4

The effect of the disturbance is minimised in steady-state when limk→∞ yk = 0. This
can be obtained with a = 1. It still remains to check that the closed loop system is
stable with a = 1. In this case, the poles of the closed-loop system are the roots of
(z − 1

2)(z − 1) + 1
4 = 0, or z = 0.75 ± i0.433. Since the poles are inside the unit disk,

the closed-loop system is stable and the final value theorem applies.

e) When a = 0, the system is stable since the closed-loop poles are at z = 0.25 ± i0.433.
Hence, the output of the system as k becomes large is given by

yk = |M(ej)| cos(k + ∠M(ej)) = 1.5267 cos(k − 1.2997)
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2. a) (i) At the frequency ω = π, G(−1) = 1/3. That rules out both B (-1/3) and D
(2/3). Since G has two poles, the phase varies −π per pole as ω varies from 0 to
π. Hence, A cannot be. The correct answer is C.

(ii) In the log scale, the magnitude simply gets multiplied by 10. As for the phase,
it also gets multiplied by 10. Hence, it was only necessary to take the frequency
plot C and multiply the y axis by 10 (see Fig. 1).
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b) (i)

FY (y) = Pr(Y ≤ y) = Pr(g(X) ≤ g(x))

= Pr(X ≤ x) = FY (x) since g is increasing.

fY (y) =
dFY (y)

dy
=
dFX(x)

dy
=

dFX(x)/dx

dy/dx
but

dy

dx
= g′(x) hence

fY (y) =
fY (x)

g′(x)
where y = g(x).

(ii)

1

π(1 + y2)
=

1/π

g′(x)
where y = g(x)

g′(x) = (1 + y2(x))

Fromt the hint, g(x) = tan(x) satisfies this relationship.
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3. (a) Y = X1 +X2, so if X1 = x1, then Y = y if and only if X2 = y − x1.

fY,X1(y, x1) = fY |X1
(y|x1)︸ ︷︷ ︸

fX2
(y−x1)

fX1(x1)

fY (y) =

∫ ∞
−∞

fY |X1
(y|x1)fX1(x1)dx1 =

∫ ∞
−∞

fX2(y − x1)fX1(x1)dx1

= fX1 ? fX2

(b) ΦX(u) = E ejuX =

∫ ∞
−∞

ejuxfX(x)dx = F (−u) where F (ω) =
∫∞
−∞ e

−jωxfX(x)dx is

the Fourier transform of the pdf.

ΦY (u) =

∫ ∞
−∞

e−jωyfY (y)dy =

∫ ∞
−∞

e−jωy
∫ ∞
−∞

fX2(y − x1)fX1(x1)dx1dy

=

∫ ∞
−∞

fX1(x1)

[∫ ∞
−∞

fX2(y − x2)e−jωydy
]
dx1

{
u = y − x1
y = u+ x1

=

∫ ∞
−∞

fX1(x1)

[∫ ∞
−∞

fX2(u)e−jωudu

]
e−jωx1dx1

=

∫ ∞
−∞

fX1(x1)ΦX2(u)e−jωx1dx1 = ΦX1(u)ΦX2(u)

(c) Y =
N∑
i=1

Xi, convolution is commutative, so

f(y) = fn ? (fn−1 ? . . . ? f1)︸ ︷︷ ︸
(X1+...+Xn−1)

= fn ? . . . ? f1

implying that

ΦY (u) = ΦXn(u)ΦX1+...+Xn−1(u) =

N∏
n=1

ΦXn(u)

(d)

ΦX(u) = E ejuX = (1− p)eju0 + peju1

= 1− p+ peju

(e) Simple Way

Let Xi be the binary randon variable indicating success (Xi = 1) or failure (Xi = 0)
of the ith trial.

Y =
N∑
i=1

Xi,ΦXi(u) = (1− p) + peju

from 3(c)ΦY u =

N∏
i=1

ΦXi(u) =
[
(1− p) + peju

]N
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Direct Calculation

ΦY (u) = E ejuY

=
N∑
y=0

PY (y)ejuy

=
N∑
y=0

(
N

y

)
py(1− p)N−yejuy

=
N∑
y=0

(
N

y

)[
peju

]y
(1− p)N−y (Binomial series)

=
[
(1− p) + peju

]N
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4. a) Apply Kraft’s inequality to check whether there exists a binary prefix-free code,

(i) 2−1 + 2−2 + 2−3 + 2−4 + 2−5 = 0.96875 < 1 hence yes, there exists a prefix-free
code.

(ii) 2−1 + 2−2 + 2−3 + 2−3 + 2−4 = 1.0625 > 1 hence no, there exists no prefix-free
code.

(iii) 5× 2−2 = 1.25 > 1 hence no, there exists no prefix-free code.

(iv) 2× 2−2 + 3× 2−3 = 7/8 < 1 hence yes, there exists a prefix-free code.

b) (i) H(X) = −0.8 ln 0.8 − 0.07 ln 0.07 − 0.06 ln 0.06 − 0.02 ln 0.02 − 0.05 ln 0.05 =
0.76 nats Divide by ln 2 to obtain the entropy in bits, i.e., 1.10 bits.

(ii) The Huffman algorithm has two possible outcomes due to a tie (students only
expected to give one):

A 0.8

B 0.07

C 0.06

D 0.02

E 0.05

0.07

0.13

0.2

1.0

or

A 0.8

B 0.07

C 0.06

D 0.02

E 0.05

0.07

0.13

0.2

1.0

resulting in the codes

Symbol Codeword Symbol Codeword

A 0 A 0
B 100 or B 10
C 101 C 110
D 110 D 1110
E 111 D 1111

The average codeword length can be calculated as E[L] =
∑

i pili or using the
path length lemma by summing all intermediate node probabilities in the tree,

E[L] = 1.0 + 0.2 + 0.13 + 0.07 = 1.4

(iii) For any Huffman code, we know that the expected codeword length is upper
bounded as E[L] < H(X) + 1. For the per symbol expected codeword length
when encoding blocks of symbols, we divide by the block length K to obtain

E[L]

K
<
H(X1 . . . XK)

K
+

1

K
= H(X) +

1

K

where the equality follows from the fact that X1, . . . , XK are independent and
identically distributed. Hence, the upper bounds for K = 1, 2, 10 are

E[L] < H(X) + 1 = 2.1

E[L2]

2
< H(X) +

1

2
= 1.6

E[L10]

10
< H(X) +

1

10
= 1.2
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c) (i) If there was a j such that lj > lj+1, we could obtain a new code by switching the
codewords for the j-th and the (j + 1)-th symbol for which

E[L′] =
∑

i/∈{j,j+1}

pili + pjlj+1 + pj+1lj <
∑
i

pili = E[L]

but this is not possible since the Huffman code is optimal in that it minimizes the
average codeword length. Hence we conclude that lj ≤ lj+1 for all j ∈ {1, 2, 3, 4}.

(ii) Since p5 is smaller than p1, p2, p3 and p4, in the new distribution the last two
probabilities p5/2 are the smallest probabilities. The Huffman algorithm will
begin by linking these two together, and the resulting intermediate node will have
probability p5, so the algorithm will continue in the same manner as it did for
the 5-ary alphabet with probabilities p1, p2, p3, p4 and p5. Hence, the lengths will
satisfy l′i = li for i = 1, 2, 3, 4 and l′5 = l′6 = l5 + 1.
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Comments on Questions

1. A popular question, well answered by most candidates. The question was easy in general
except for parts (d) and (e) where less than 10% of candidates remembered to check for
stability when applying the final value theorem and computing a steady state response.

2. An unpopular question, partly because it mixes two different parts of the course, and
partly because the digital control had a slightly a-typical question requiring candidates to
understand what happens to a plot in logarithmic scale when the function is taken to the
10th power. Those who did attempt the question did very well in general.

3. The most popular question, well answered by the majority of candidates. This was partly
book work and partly a direct application of what had been learned during the lectures
and most candidates solved it easily.

4. A less popular question that was longer than most but was solved fairly well by those
who attempted it. Parts (a) and (b) were direct applications of techniques learned in
the lecture, while part (c) invited further thought and only few candidates solved (c)(i)
satisfactorily by referring to the optimality of Huffman’s algorithm.

JS, May 2015
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