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. a) Any or all of these are equally acceptable:
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Yk = gk * UL = deuk—é = ng—ew
=0 £=0
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=0
hence
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= Z xez ™t Z Ymz (letting m = k — £) (4)
£=0 m=0

= Z{zi}Z{yx} (5)

c) There are at least 2 ways of doing this, both equally good.
Method 1: The unit pulse input is {ux} = (1,0,0,...).
Hence from the difference equation we have (assuming ux = 0 for k£ < 0 as usual)

g = 0+0+0=0 (6)
g = 1+0+0=1 (7)
g = 042+40=2 (8)
g3 = 0+0+1=1 (9)
g = 0+0+0=0 (10)

(11)

so that {gx} = (0,1,2,1,0,0,...) is the pulse response.



The transfer function is the z-transform of the pulse response, so

2Z24+22+1  (2+1)?
23 28

[e.e]
G(z) :ngz_k=O+z_1—|—2,z_2+z_3+0+...:
k=0

Method 2: Take z-transforms of both sides of the difference equation (assuming zero
initial conditions):

Y(2) = 27U (2) +2:72U(2) + 272U (2) = (271 + 2272 4+ 273)U(2)

Hence the transfer function is

Y(2) _ -1

3 2242z+41  (2+1)?
Uz) -

_2—|-Z _

G(z) = + 2z

23 23
The pulse response is the inverse z-transform of the transfer function, hence
{gp} =2 21427242731 =(0,1,2,1,0,0,...)

Again there are at least 2 ways of doing this, both equally good. Method 1 is a bit
simpler in this case, but only works in some examples; method 2 is more generic.

Method 1: Directly from the difference equation, using {ur} = (ug,u1,us,...) =
(1,—-1,1,...), gives

Yo = 0+0+0=0 (12)
y o= 140+0=1 (13)
yo = —1+42+40=1 (14)
y3 = 1-2+1=0 (15)
yi = —1+42-1=0 (16)

(17)

and it can be seen that y, = 0 for k > 3.

Method 2: From the z-transform table, U(z) = 1+i—1 = 7.

This could also be obtained from first principles as follows:

> > =/ 1\* 1 z
_ -k _ k.,—k _ _ _
U= met = e =3 () = =
k=0 k=0 k=0

Therefore

z 2 z z
Y(2) = Gl2)U(z) = < ;1) x o= i

hence {yx} = Z7H{z"t + 272} = (0,1,1,0,0,...).

up = (—1)F = cos(kn) so the steady-state response to this periodic input is obtained
as G(e’?) with 6 = 7, namely as G(—1). But G(z) = (z + 1)?/23, so G(—1) = 0, and
indeed we found that y; = 0 for & > 3.

(Usually the frequency response gives the response as k — oo, but in this case it gets it
right after only a finite number of steps, because the given system is an FIR filter.)

271 + 272




2. a)

(iii)
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H( )—G< T > o (z;l +10w0)2 (18)
(2= 1) + (woT)?
(2= 14 10w,T)? (19)
22 =224 14 (woT)? (20)

(z = 14 10w,T)?

Hence the poles are both at z =1 — 10w,T" and
the zeros are at the roots of the numerator, namely at

% (2 /A1~ (on)2]> =14/ (WD) =1+ jw,T

The filter is stable providing that |1 — 10w,T| < 1. But 1 — 10w,T" is real and
woI" > 0, so this condition translates into 0 < 10w, T < 2, or

0<T <

Bw,
Low frequency behaviour: s =0 or z = 1 (= ¢/0):

(jwoT')(—jwoT) 1

G0) = — and H(1) =

~ 100 (10w, T)2 100
so the two filters agree at frequency 0 (for all T').
High frequency behaviour: s = oo or z = —1 (= &/™):
1+241 T)? 4 T)?
G(0) =1 and H(-1)= F24 1 F W IV + (woT) 5 > lasT —0

(-1 -1410w,T)?  (—-2+ 10w,T)

so the two filters agree at high frequencies as T is reduced to 0. Note that the
frequency coresponding to z = —1 is w/T', which approaches oo as T' — 0.
Alternative solution: Low frequency: H(1) = G (322) = G(0).

High frequency: H(-1) = G (=) = G (5#) = G(0) as T — 0.

So the two filters will always agree at low and high frequencies if the Euler trans-
formation is used and T" — 0.



b) (i) Definition of strict sense and wide sense stationarity from lecture notes.

(ii)
// flw Acos wt + ¢)dwde
=A / / flw cos wt cos ¢ — sinwt sin ¢|dwde
:A/f w) cos wtdw /_7; %cosgﬁdqb - A/f(w) sin wtdw /_7; %singbdgb

:A/f(w) coswtdw%[sin o)+ A/f(w) sinwtdw[% cos 9|
=0

EX (1) X (t2) = A2 / / " W) icos(wtl + ) cos(wts + ¢)dwdd
=A? / /_7r f(w Cos (wty + ¢ — wta — @) + cos(wty + ¢ + wty + ¢)|dwde
:AQ/f w) cos w(ty —tg)dw/ﬂ idgb
+ A2 / /7; f(w)% cos(w(ty + t2) + 2¢)dwde
:AQ/f w) cosw(ty — tg)dw
//7r F(@) g feost(ty + t2) c0s 26 — sinw(ty + t2) sin 26]duwds
:AQ/f w) cosw(t — to dw+A2/f(w)cosw(t1 + to)dw /_W2Tr0082gbd¢)
— A? / sin f(w)w(ty + t2)dw /_ 7; % sin 2¢d¢
:AQ/f(w)cosw(tl — t9)dw

EX(t1)X (t2) is a function of |t; — t2| and EX () is constant, so X (t) is WSS.



3. (a) Definition of ergodic from lecture notes.

(b) With EX(t) =0, rxx(0) = EX(t)X(t) = EX(t)? for any t, so that Qx = EX(t)%.
From the pdf of X (t), fx(z) = 55 for z € [~ A, A] so that

A 3

1 1 x
EXt2 2 d A
®) /Ax 2A * 2A3|7A 3

therefore Qx = 42

-3
(c)

Sx(w) :QX/ e ATl g=gwT g

—00
0 00
:QX / e?ATefijdT + / 672/\Tefjw7d7_
—00 0
— QX 62)\77]'0,)7"0 . QX 62)\7‘7ij‘00_’_
2\ — jw T 2\ 4w 0
Qx Qx 4\

T jw  2h+ jw =@

Y (t) =X (t) % h(t) = X(t) * 6(t) + X (t)  6(t — T) = x(t) — x(t — T)
= E[(X(t) - X(t —T)(X(t—7)— X(t—T —7)]
—EX(W)X(t-T—-7)—EX(t-T)X(t-T—71)+EX(t-T)X(t—T — 1

Sy (w) is the Fourier Transform of ryy(7), and Sx(w) is the Fourier Transform of
rxx (7‘ )

Sy (w) =28x (w) — e TSy (w) — /T Sy (w)
=Sx(w)(2 — (e 4 %)) = 28y (w)(1 — coswT)
A\

:2QXm (1 — COS L(.)T>



4. a) X is uniformly distributed over its ternary alphabet {1,2,3} hence
H(X) = log, 3 = 1.585 [bits]

b) The number of female offspring follows a binomial distributed given the total number
of offspring, i.e.,
Pyx(0]1) =1/2
Pyix(11) =1/2

and
Py x(0[2) =1/4  (all male)
Pyx(1]2) =1/2  (male,female) or (female,male)
Pyx(2[2) =1/4  (all female)

and
Pyx(03) = 1/8  (all male)
Py x(1]3) =3/8  (m,m,f) or (m,f,m) or (f,m,m)
Pyx(23) =3/8 (m,ff) or (fm,f) or (f,f,m)
Pyx(3[3) =1/8  (all female)

hence

HY|X)=HY|X=1)Px(1)+ HY|X =2)Px(2) + HY|X = 3)Px(3)
~H(1)2, 1/2)% +H(1/4,1/2, 1/4)% +H(1/8,3/8,3/8, 1/8)%

1 1/1 1 1/1 3, 8
=3+3 <2 log(2) + 5 log(4)> +3 <4 log(8) + 7 log >

3
1 13 1 3
11

1 .
5 1 log(3) = 1.437 [bits]

H(X,Y) = H(X) + H(Y|X) = log(3) + = — Zlog(3) = > log(3) + =

6 4 T4 6
= 1.585 + 1.437 = 3.022 [bits]

d) We compute the joint probabilities Pxy(z,y) = Px(7)Py|x(y|lr) and construct the
code tree using Huffman’s algorithm as shown in Figure 1.
The resulting code table is

(X,Y) | Codeword
(1,0) | 000
(1,1) | 001
(2,0) | 100
(2,1) | 010
(2,2) | 101
(3,0) | 1100
(3,1) | 011
(3,2) | 111
(3,3) | 1101

(=}



(X,Y) (1,0) (1,1) (2,0) (2,1) (2,2) (3,0) (3,1) (3,2) (3,3)
1/6 1/6 1/12 1/6 1/12 1/24 1/8 1/8 1/24

®
1/3 7/24
1/6 1/12
O >
5/8 5/24

3/8
)

\ I

Figure 1: Huffman tree for Question 4.d)

D)
%—CD

\‘H)}—*

1 1 1 1 1 1 1 1 1
ELl==-3+-3+-—=34+-34+-—=23+—-4+-3+-3+-—-4
IZ] 6+6+12 +6+12 +24 +8 +8 +24

—=3(1—1/12) +4/12 =3 1/12 = 3.0833

and hence
k1 = E[L]/Ly = 3.0833/4 = 0.7708.
f)
E[Lsp] =) x,y)Pxy(x,y) [log 1}
( Pxy (x,y)
=3 31—1—21 +4 21 +5 21
N 6 8 12 44
9 2 5
4+3+12 0/3 = 3.3333
and hence

ko = E[Lgp)/Ly = 3.3333/4 = 5/6 = 0.8333

g) When encoding database entries jointly using an arithmetic encoder, the overall code-
word length will tend to the block entropy plus 2, and hence the entropy per database
entry will tend to the entropy since the effect of the added 2 divided by the number of
database entries will vanish. Hence we have

k3 = H(X,Y)/L; = 3.0221/4 = 0.7555.



Comments on Questions

1. To be completed. ..
2. To be completed. ..
3. To be completed. ..

4. To be completed. ..
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