
Crib, 3F1 2016

1. a) Any or all of these are equally acceptable:

yk = gk ∗ uk =

k∑
`=0

g`uk−` =

k∑
`=0

gk−`u`

b)

xk ∗ yk =

k∑
`=0

x`yk−`

hence

Z{xk ∗ yk} =
∞∑
k=0

k∑
`=0

x`yk−`z
−k (1)

=
∞∑
k=0

k∑
`=0

x`z
−`yk−`z

−(k−`) (2)

=
∞∑
`=0

∞∑
k=`

x`z
−`yk−`z

−(k−`) (3)

=

∞∑
`=0

x`z
−`

∞∑
m=0

ymz
−m (letting m = k − `) (4)

= Z{xk}Z{yk} (5)

c) There are at least 2 ways of doing this, both equally good.

Method 1: The unit pulse input is {uk} = (1, 0, 0, . . . ).

Hence from the difference equation we have (assuming uk = 0 for k < 0 as usual)

g0 = 0 + 0 + 0 = 0 (6)

g1 = 1 + 0 + 0 = 1 (7)

g2 = 0 + 2 + 0 = 2 (8)

g3 = 0 + 0 + 1 = 1 (9)

g4 = 0 + 0 + 0 = 0 (10)

... (11)

so that {gk} = (0, 1, 2, 1, 0, 0, . . . ) is the pulse response.
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The transfer function is the z-transform of the pulse response, so

G(z) =
∞∑
k=0

gkz
−k = 0 + z−1 + 2z−2 + z−3 + 0 + · · · = z2 + 2z + 1

z3
=

(z + 1)2

z3

Method 2: Take z-transforms of both sides of the difference equation (assuming zero
initial conditions):

Y (z) = z−1U(z) + 2z−2U(z) + z−3U(z) = (z−1 + 2z−2 + z−3)U(z)

Hence the transfer function is

G(z) =
Y (z)

U(z)
= z−1 + 2z−2 + z−3 =

z2 + 2z + 1

z3
=

(z + 1)2

z3

The pulse response is the inverse z-transform of the transfer function, hence

{gk} = Z−1{z−1 + 2z−2 + z−3} = (0, 1, 2, 1, 0, 0, . . . )

d) Again there are at least 2 ways of doing this, both equally good. Method 1 is a bit
simpler in this case, but only works in some examples; method 2 is more generic.

Method 1: Directly from the difference equation, using {uk} = (u0, u1, u2, . . . ) =
(1,−1, 1, . . . ), gives

y0 = 0 + 0 + 0 = 0 (12)

y1 = 1 + 0 + 0 = 1 (13)

y2 = −1 + 2 + 0 = 1 (14)

y3 = 1− 2 + 1 = 0 (15)

y4 = −1 + 2− 1 = 0 (16)

... (17)

and it can be seen that yk = 0 for k ≥ 3.

Method 2: From the z-transform table, U(z) = 1
1+z−1 = z

z+1 .
This could also be obtained from first principles as follows:

U(z) =
∞∑
k=0

ukz
−k =

∞∑
k=0

(−1)kz−k =
∞∑
k=0

(
−1

z

)k
=

1

1 + 1/z
=

z

z + 1

Therefore

Y (z) = G(z)U(z) =
(z + 1)2

z3
× z

z + 1
=
z + 1

z2
= z−1 + z−2

hence {yk} = Z−1{z−1 + z−2} = (0, 1, 1, 0, 0, . . . ).

e) uk = (−1)k = cos(kπ) so the steady-state response to this periodic input is obtained
as G(ejθ) with θ = π, namely as G(−1). But G(z) = (z + 1)2/z3, so G(−1) = 0, and
indeed we found that yk = 0 for k ≥ 3.
(Usually the frequency response gives the response as k →∞, but in this case it gets it
right after only a finite number of steps, because the given system is an FIR filter.)
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2. a) (i)

H(z) = G

(
z − 1

T

)
=

(
z−1
T

)2
+ ω2

o(
z−1
T + 10ωo

)2 (18)

=
(z − 1)2 + (ωoT )2

(z − 1 + 10ωoT )2
(19)

=
z2 − 2z + 1 + (ωoT )2

(z − 1 + 10ωoT )2
(20)

Hence the poles are both at z = 1− 10ωoT and
the zeros are at the roots of the numerator, namely at

1

2

(
2±

√
4− 4[1 + (ωoT )2]

)
= 1±

√
−(ωoT )2 = 1± jωoT

(ii) The filter is stable providing that |1 − 10ωoT | < 1. But 1 − 10ωoT is real and
ωoT > 0, so this condition translates into 0 < 10ωoT < 2, or

0 < T <
1

5ωo

(iii) Low frequency behaviour: s = 0 or z = 1 (= ej0):

G(0) =
1

100
and H(1) =

(jωoT )(−jωoT )

(10ωoT )2
=

1

100

so the two filters agree at frequency 0 (for all T ).
High frequency behaviour: s =∞ or z = −1 (= ejπ):

G(∞) = 1 and H(−1) =
1 + 2 + [1 + (ωoT )2]

(−1− 1 + 10ωoT )2
=

4 + (ωoT )2

(−2 + 10ωoT )2
→ 1 as T → 0

so the two filters agree at high frequencies as T is reduced to 0. Note that the
frequency coresponding to z = −1 is π/T , which approaches ∞ as T → 0.
Alternative solution: Low frequency: H(1) = G

(
1−1
T

)
= G(0).

High frequency: H(−1) = G
(−1−1

T

)
= G

(−2
T

)
→ G(0) as T → 0.

So the two filters will always agree at low and high frequencies if the Euler trans-
formation is used and T → 0.
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b) (i) Definition of strict sense and wide sense stationarity from lecture notes.

(ii)

EX(t) =

∫ ∫ π

−π
f(ω)

1

2π
A cos(ωt+ φ)dωdφ

=A

∫ ∫ π

−π
f(ω)

1

2π
[cosωt cosφ− sinωt sinφ]dωdφ

=A

∫
f(ω) cosωtdω

∫ π

−π

1

2π
cosφdφ−A

∫
f(ω) sinωtdω

∫ π

−π

1

2π
sinφdφ

=A

∫
f(ω) cosωtdω

1

2π
[sinφ]π−π +A

∫
f(ω) sinωtdω[

1

2π
cosφ]π−π

=0

EX(t1)X(t2) =A2

∫ ∫ π

−π
f(ω)

1

2π
cos(ωt1 + φ) cos(ωt2 + φ)dωdφ

=A2

∫ ∫ π

−π
f(ω)

1

2π
[cos(ωt1 + φ− ωt2 − φ) + cos(ωt2 + φ+ ωt1 + φ)]dωdφ

=A2

∫
f(ω) cosω(t1 − t2)dω

∫ π

−π

1

2π
dφ

+A2

∫ ∫ π

−π
f(ω)

1

2π
cos(ω(t1 + t2) + 2φ)dωdφ

=A2

∫
f(ω) cosω(t1 − t2)dω

+

∫ ∫ π

−π
f(ω)

1

2π
[cosω(t1 + t2) cos 2φ− sinω(t1 + t2) sin 2φ]dωdφ

=A2

∫
f(ω) cosω(t1 − t2)dω +A2

∫
f(ω) cosω(t1 + t2)dω

∫ π

−π

1

2π
cos 2φdφ

−A2

∫
sin f(ω)ω(t1 + t2)dω

∫ π

−π

1

2π
sin 2φdφ

=A2

∫
f(ω) cosω(t1 − t2)dω

EX(t1)X(t2) is a function of |t1 − t2| and EX(t) is constant, so X(t) is WSS.
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3. (a) Definition of ergodic from lecture notes.

(b) With EX(t) = 0, rXX(0) = EX(t)X(t) = EX(t)2 for any t, so that QX = EX(t)2.
From the pdf of X(t), fX(x) = 1

2A for x ∈ [−A,A] so that

EX(t)2 =

∫ A

−A
x2

1

2A
dx =

1

2A

x3

3
|A−A =

A2

3

therefore QX = A2

3 .

(c)

SX(ω) =QX

∫ ∞
−∞

e−2λ|τ |e−jωτdτ

=QX

∫ 0

−∞
e2λτe−jωτdτ +

∫ ∞
0

e−2λτe−jωτdτ

=
QX

2λ− jω
e2λτ−jωτ |0−∞ −

QX
2λ+ jω

e2λτ−jωτ |∞0 +

=
QX

2λ− jω
+

QX
2λ+ jω

= Qx
4λ

4λ2 + ω2

(d)

Y (t) =X(t) ∗ h(t) = X(t) ∗ δ(t) +X(t) ∗ δ(t− T ) = x(t)− x(t− T )

rY Y (τ) = E[Y (t)Y (t− τ)] = E[(X(t)−X(t− T ))(X(t− τ)−X(t− T − τ)]

= EX(t)X(t− τ)− EX(t)X(t− T − τ)− EX(t− T )X(t− T − τ) + EX(t− T )X(t− T − τ)

= rXX(τ)− rXX(τ − T )− rXX(τ + T ) + rXX(τ)

= 2rXX(τ)− rXX(τ − T )− rXX(τ + T )

SY (ω) is the Fourier Transform of rY Y (τ), and SX(ω) is the Fourier Transform of
rXX(τ).

SY (ω) =2SX(ω)− e−jωTSX(ω)− ejωTSX(ω)

=SX(ω)(2− (e−jωT + ejωT )) = 2SX(ω)(1− cosωT )

=2QX
4λ

4λ2 + ω2
(1− cosωT )
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4. a) X is uniformly distributed over its ternary alphabet {1, 2, 3} hence

H(X) = log2 3 = 1.585 [bits]

b) The number of female offspring follows a binomial distributed given the total number
of offspring, i.e., {

PY |X(0|1) = 1/2

PY |X(1|1) = 1/2

and 
PY |X(0|2) = 1/4 (all male)

PY |X(1|2) = 1/2 (male,female) or (female,male)

PY |X(2|2) = 1/4 (all female)

and 
PY |X(0|3) = 1/8 (all male)

PY |X(1|3) = 3/8 (m,m,f) or (m,f,m) or (f,m,m)

PY |X(2|3) = 3/8 (m,f,f) or (f,m,f) or (f,f,m)

PY |X(3|3) = 1/8 (all female)

hence

H(Y |X) = H(Y |X = 1)PX(1) +H(Y |X = 2)PX(2) +H(Y |X = 3)PX(3)

= H(1/2, 1/2)
1

3
+H(1/4, 1/2, 1/4)

1

3
+H(1/8, 3/8, 3/8, 1/8)

1

3

=
1

3
+

1

3

(
1

2
log(2) +

1

2
log(4)

)
+

1

3

(
1

4
log(8) +

3

4
log

8

3

)
=

1

3
+

1

3

3

2
+

1

3

(
3− 3

4
log(3))

)
=

11

6
− 1

4
log(3) = 1.437 [bits]

c)

H(X,Y ) = H(X) +H(Y |X) = log(3) +
11

6
− 1

4
log(3) =

3

4
log(3) +

11

6
= 1.585 + 1.437 = 3.022 [bits]

d) We compute the joint probabilities PXY (x, y) = PX(x)PY |X(y|x) and construct the
code tree using Huffman’s algorithm as shown in Figure 1.

The resulting code table is

(X,Y ) Codeword

(1, 0) 000
(1, 1) 001
(2, 0) 100
(2, 1) 010
(2, 2) 101
(3, 0) 1100
(3, 1) 011
(3, 2) 111
(3, 3) 1101
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(X,Y )
1/6

(1, 0)

1/6

(1, 1)

1/12

(2, 0)

1/6

(2, 1)

1/12

(2, 2)

1/24

(3, 0)

1/8

(3, 1)

1/8

(3, 2)

1/24

(3, 3)

1/121/6

5/24

7/241/3

3/8

5/8

1
0 1

Figure 1: Huffman tree for Question 4.d)

e)

E[L] =
1

6
3 +

1

6
3 +

1

12
3 +

1

6
3 +

1

12
3 +

1

24
4 +

1

8
3 +

1

8
3 +

1

24
4

= 3(1− 1/12) + 4/12 = 3 1/12 = 3.0833

and hence
κ1 = E[L]/Lf = 3.0833/4 = 0.7708.

f)

E[LSF ] =
∑
(

x, y)PXY (x, y)

⌈
log

1

PXY (x, y)

⌉

= 3

(
3

1

6
+ 2

1

8

)
+ 4

(
2

1

12

)
+ 5

(
2

1

44

)
=

9

4
+

2

3
+

5

12
= 10/3 = 3.3333

and hence
κ2 = E[LSF ]/LH = 3.3333/4 = 5/6 = 0.8333

g) When encoding database entries jointly using an arithmetic encoder, the overall code-
word length will tend to the block entropy plus 2, and hence the entropy per database
entry will tend to the entropy since the effect of the added 2 divided by the number of
database entries will vanish. Hence we have

κ3 = H(X,Y )/Lf = 3.0221/4 = 0.7555.
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Comments on Questions

1. To be completed. . .

2. To be completed. . .

3. To be completed. . .

4. To be completed. . .

JS, January 2016
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