Crib, 3F1 2016

1. a) Any or all of these are equally acceptable:

$$
y_{k}=g_{k} * u_{k}=\sum_{\ell=0}^{k} g_{\ell} u_{k-\ell}=\sum_{\ell=0}^{k} g_{k-\ell} u_{\ell}
$$

b)

$$
x_{k} * y_{k}=\sum_{\ell=0}^{k} x_{\ell} y_{k-\ell}
$$

hence

$$
\begin{align*}
\mathcal{Z}\left\{x_{k} * y_{k}\right\} & =\sum_{k=0}^{\infty} \sum_{\ell=0}^{k} x_{\ell} y_{k-\ell} z^{-k} \tag{1}\\
& =\sum_{k=0}^{\infty} \sum_{\ell=0}^{k} x_{\ell} z^{-\ell} y_{k-\ell} z^{-(k-\ell)} \tag{2}\\
& =\sum_{\ell=0}^{\infty} \sum_{k=\ell}^{\infty} x_{\ell} z^{-\ell} y_{k-\ell} z^{-(k-\ell)} \tag{3}\\
& =\sum_{\ell=0}^{\infty} x_{\ell} z^{-\ell} \sum_{m=0}^{\infty} y_{m} z^{-m} \quad(\text { letting } m=k-\ell) \tag{4}\\
& =\mathcal{Z}\left\{x_{k}\right\} \mathcal{Z}\left\{y_{k}\right\} \tag{5}
\end{align*}
$$

c) There are at least 2 ways of doing this, both equally good.

Method 1: The unit pulse input is $\left\{u_{k}\right\}=(1,0,0, \ldots)$.
Hence from the difference equation we have (assuming $u_{k}=0$ for $k<0$ as usual)

$$
\begin{align*}
& g_{0}=0+0+0=0 \tag{6}\\
& g_{1}=1+0+0=1 \tag{7}\\
& g_{2}=0+2+0=2 \tag{8}\\
& g_{3}=0+0+1=1 \tag{9}\\
& g_{4}=0+0+0=0 \tag{10}
\end{align*}
$$

so that $\left\{g_{k}\right\}=(0,1,2,1,0,0, \ldots)$ is the pulse response.

The transfer function is the z-transform of the pulse response, so

$$
G(z)=\sum_{k=0}^{\infty} g_{k} z^{-k}=0+z^{-1}+2 z^{-2}+z^{-3}+0+\cdots=\frac{z^{2}+2 z+1}{z^{3}}=\frac{(z+1)^{2}}{z^{3}}
$$

Method 2: Take z-transforms of both sides of the difference equation (assuming zero initial conditions):

$$
Y(z)=z^{-1} U(z)+2 z^{-2} U(z)+z^{-3} U(z)=\left(z^{-1}+2 z^{-2}+z^{-3}\right) U(z)
$$

Hence the transfer function is

$$
G(z)=\frac{Y(z)}{U(z)}=z^{-1}+2 z^{-2}+z^{-3}=\frac{z^{2}+2 z+1}{z^{3}}=\frac{(z+1)^{2}}{z^{3}}
$$

The pulse response is the inverse z-transform of the transfer function, hence

$$
\left\{g_{k}\right\}=\mathcal{Z}^{-1}\left\{z^{-1}+2 z^{-2}+z^{-3}\right\}=(0,1,2,1,0,0, \ldots)
$$

d) Again there are at least 2 ways of doing this, both equally good. Method 1 is a bit simpler in this case, but only works in some examples; method 2 is more generic.
Method 1: Directly from the difference equation, using $\left\{u_{k}\right\}=\left(u_{0}, u_{1}, u_{2}, \ldots\right)=$ $(1,-1,1, \ldots)$, gives

$$
\begin{align*}
y_{0} & =0+0+0=0 \tag{12}\\
y_{1} & =1+0+0=1 \tag{13}\\
y_{2} & =-1+2+0=1 \tag{14}\\
y_{3} & =1-2+1=0 \tag{15}\\
y_{4} & =-1+2-1=0 \tag{16}\\
& \vdots \tag{17}
\end{align*}
$$

and it can be seen that $y_{k}=0$ for $k \geq 3$.
Method 2: From the z-transform table, $U(z)=\frac{1}{1+z^{-1}}=\frac{z}{z+1}$.
This could also be obtained from first principles as follows:

$$
U(z)=\sum_{k=0}^{\infty} u_{k} z^{-k}=\sum_{k=0}^{\infty}(-1)^{k} z^{-k}=\sum_{k=0}^{\infty}\left(-\frac{1}{z}\right)^{k}=\frac{1}{1+1 / z}=\frac{z}{z+1}
$$

Therefore

$$
Y(z)=G(z) U(z)=\frac{(z+1)^{2}}{z^{3}} \times \frac{z}{z+1}=\frac{z+1}{z^{2}}=z^{-1}+z^{-2}
$$

hence $\left\{y_{k}\right\}=\mathcal{Z}^{-1}\left\{z^{-1}+z^{-2}\right\}=(0,1,1,0,0, \ldots)$.
e) $u_{k}=(-1)^{k}=\cos (k \pi)$ so the steady-state response to this periodic input is obtained as $G\left(e^{j \theta}\right)$ with $\theta=\pi$, namely as $G(-1)$. But $G(z)=(z+1)^{2} / z^{3}$, so $G(-1)=0$, and indeed we found that $y_{k}=0$ for $k \geq 3$.
(Usually the frequency response gives the response as $k \rightarrow \infty$, but in this case it gets it right after only a finite number of steps, because the given system is an FIR filter.)
2. a) (i)

$$
\begin{align*}
H(z)=G\left(\frac{z-1}{T}\right) & =\frac{\left(\frac{z-1}{T}\right)^{2}+\omega_{o}^{2}}{\left(\frac{z-1}{T}+10 \omega_{o}\right)^{2}} \tag{18}\\
& =\frac{(z-1)^{2}+\left(\omega_{o} T\right)^{2}}{\left(z-1+10 \omega_{o} T\right)^{2}} \tag{19}\\
& =\frac{z^{2}-2 z+1+\left(\omega_{o} T\right)^{2}}{\left(z-1+10 \omega_{o} T\right)^{2}} \tag{20}
\end{align*}
$$

Hence the poles are both at $z=1-10 \omega_{o} T$ and
the zeros are at the roots of the numerator, namely at

$$
\frac{1}{2}\left(2 \pm \sqrt{4-4\left[1+\left(\omega_{o} T\right)^{2}\right]}\right)=1 \pm \sqrt{-\left(\omega_{o} T\right)^{2}}=1 \pm j \omega_{o} T
$$

(ii) The filter is stable providing that $\left|1-10 \omega_{o} T\right|<1$. But $1-10 \omega_{o} T$ is real and $\omega_{o} T>0$, so this condition translates into $0<10 \omega_{o} T<2$, or

$$
0<T<\frac{1}{5 \omega_{o}}
$$

(iii) Low frequency behaviour: $s=0$ or $z=1\left(=e^{j 0}\right)$:

$$
G(0)=\frac{1}{100} \quad \text { and } \quad H(1)=\frac{\left(j \omega_{o} T\right)\left(-j \omega_{o} T\right)}{\left(10 \omega_{o} T\right)^{2}}=\frac{1}{100}
$$

so the two filters agree at frequency 0 (for all T).
High frequency behaviour: $s=\infty$ or $z=-1\left(=e^{j \pi}\right)$:
$G(\infty)=1 \quad$ and $\quad H(-1)=\frac{1+2+\left[1+\left(\omega_{o} T\right)^{2}\right]}{\left(-1-1+10 \omega_{o} T\right)^{2}}=\frac{4+\left(\omega_{o} T\right)^{2}}{\left(-2+10 \omega_{o} T\right)^{2}} \rightarrow 1$ as $T \rightarrow 0$
so the two filters agree at high frequencies as T is reduced to 0 . Note that the frequency coresponding to $z=-1$ is π / T, which approaches ∞ as $T \rightarrow 0$.
Alternative solution: Low frequency: $H(1)=G\left(\frac{1-1}{T}\right)=G(0)$.
High frequency: $H(-1)=G\left(\frac{-1-1}{T}\right)=G\left(\frac{-2}{T}\right) \rightarrow G(0)$ as $T \rightarrow 0$.
So the two filters will always agree at low and high frequencies if the Euler transformation is used and $T \rightarrow 0$.
b) (i) Definition of strict sense and wide sense stationarity from lecture notes. (ii)

$$
\begin{aligned}
E X(t)= & \iint_{-\pi}^{\pi} f(\omega) \frac{1}{2 \pi} A \cos (\omega t+\phi) d \omega d \phi \\
= & A \iint_{-\pi}^{\pi} f(\omega) \frac{1}{2 \pi}[\cos \omega t \cos \phi-\sin \omega t \sin \phi] d \omega d \phi \\
= & A \int f(\omega) \cos \omega t d \omega \int_{-\pi}^{\pi} \frac{1}{2 \pi} \cos \phi d \phi-A \int f(\omega) \sin \omega t d \omega \int_{-\pi}^{\pi} \frac{1}{2 \pi} \sin \phi d \phi \\
= & A \int f(\omega) \cos \omega t d \omega \frac{1}{2 \pi}[\sin \phi]_{-\pi}^{\pi}+A \int f(\omega) \sin \omega t d \omega\left[\frac{1}{2 \pi} \cos \phi\right]_{-\pi}^{\pi} \\
= & 0 \\
E X\left(t_{1}\right) X\left(t_{2}\right)= & A^{2} \iint_{-\pi}^{\pi} f(\omega) \frac{1}{2 \pi} \cos \left(\omega t_{1}+\phi\right) \cos \left(\omega t_{2}+\phi\right) d \omega d \phi \\
= & A^{2} \iint_{-\pi}^{\pi} f(\omega) \frac{1}{2 \pi}\left[\cos \left(\omega t_{1}+\phi-\omega t_{2}-\phi\right)+\cos \left(\omega t_{2}+\phi+\omega t_{1}+\phi\right)\right] d \omega d \phi \\
= & A^{2} \int f(\omega) \cos \omega\left(t_{1}-t_{2}\right) d \omega \int_{-\pi}^{\pi} \frac{1}{2 \pi} d \phi \\
& +A^{2} \iint_{-\pi}^{\pi} f(\omega) \frac{1}{2 \pi} \cos \left(\omega\left(t_{1}+t_{2}\right)+2 \phi\right) d \omega d \phi \\
= & A^{2} \int f(\omega) \cos \omega\left(t_{1}-t_{2}\right) d \omega \\
& +\iint_{-\pi}^{\pi} f(\omega) \frac{1}{2 \pi}\left[\cos \omega\left(t_{1}+t_{2}\right) \cos 2 \phi-\sin \omega\left(t_{1}+t_{2}\right) \sin 2 \phi\right] d \omega d \phi \\
= & A^{2} \int f(\omega) \cos \omega\left(t_{1}-t_{2}\right) d \omega+A^{2} \int f(\omega) \cos \omega\left(t_{1}+t_{2}\right) d \omega \int_{-\pi}^{\pi} \frac{1}{2 \pi} \cos 2 \phi d \phi \\
& -A^{2} \int \sin f(\omega) \omega\left(t_{1}+t_{2}\right) d \omega \int_{-\pi}^{\pi} \frac{1}{2 \pi} \sin 2 \phi d \phi \\
= & A^{2} \int f(\omega) \cos \omega\left(t_{1}-t_{2}\right) d \omega
\end{aligned}
$$

$E X\left(t_{1}\right) X\left(t_{2}\right)$ is a function of $\left|t_{1}-t_{2}\right|$ and $E X(t)$ is constant, so $X(t)$ is WSS.
3. (a) Definition of ergodic from lecture notes.
(b) With $E X(t)=0, r_{X X}(0)=E X(t) X(t)=E X(t)^{2}$ for any t, so that $Q_{X}=E X(t)^{2}$. From the pdf of $X(t), f_{X}(x)=\frac{1}{2 A}$ for $x \in[-A, A]$ so that

$$
E X(t)^{2}=\int_{-A}^{A} x^{2} \frac{1}{2 A} d x=\left.\frac{1}{2 A} \frac{x^{3}}{3}\right|_{-A} ^{A}=\frac{A^{2}}{3}
$$

therefore $Q_{X}=\frac{A^{2}}{3}$.
(c)

$$
\begin{aligned}
S_{X}(\omega) & =Q_{X} \int_{-\infty}^{\infty} e^{-2 \lambda|\tau|} e^{-j \omega \tau} d \tau \\
& =Q_{X} \int_{-\infty}^{0} e^{2 \lambda \tau} e^{-j \omega \tau} d \tau+\int_{0}^{\infty} e^{-2 \lambda \tau} e^{-j \omega \tau} d \tau \\
& =\left.\frac{Q_{X}}{2 \lambda-j \omega} e^{2 \lambda \tau-j \omega \tau}\right|_{-\infty} ^{0}-\left.\frac{Q_{X}}{2 \lambda+j \omega} e^{2 \lambda \tau-j \omega \tau}\right|_{0} ^{\infty}+ \\
& =\frac{Q_{X}}{2 \lambda-j \omega}+\frac{Q_{X}}{2 \lambda+j \omega}=Q_{x} \frac{4 \lambda}{4 \lambda^{2}+\omega^{2}}
\end{aligned}
$$

(d)

$$
\begin{aligned}
Y(t)= & X(t) * h(t)=X(t) * \delta(t)+X(t) * \delta(t-T)=x(t)-x(t-T) \\
r_{Y Y}(\tau) & =E[Y(t) Y(t-\tau)]=E[(X(t)-X(t-T))(X(t-\tau)-X(t-T-\tau)] \\
& =E X(t) X(t-\tau)-E X(t) X(t-T-\tau)-E X(t-T) X(t-T-\tau)+E X(t-T) X(t-T-\tau \\
& =r_{X X}(\tau)-r_{X X}(\tau-T)-r_{X X}(\tau+T)+r_{X X}(\tau) \\
& =2 r_{X X}(\tau)-r_{X X}(\tau-T)-r_{X X}(\tau+T)
\end{aligned}
$$

$S_{Y}(\omega)$ is the Fourier Transform of $r_{Y Y}(\tau)$, and $S_{X}(\omega)$ is the Fourier Transform of $r_{X X}(\tau)$.

$$
\begin{aligned}
S_{Y}(\omega) & =2 S_{X}(\omega)-e^{-j \omega T} S_{X}(\omega)-e^{j \omega T} S_{X}(\omega) \\
& =S_{X}(\omega)\left(2-\left(e^{-j \omega T}+e^{j \omega T}\right)\right)=2 S_{X}(\omega)(1-\cos \omega T) \\
& =2 Q_{X} \frac{4 \lambda}{4 \lambda^{2}+\omega^{2}}(1-\cos \omega T)
\end{aligned}
$$

4. a) X is uniformly distributed over its ternary alphabet $\{1,2,3\}$ hence

$$
H(X)=\log _{2} 3=1.585[\mathrm{bits}]
$$

b) The number of female offspring follows a binomial distributed given the total number of offspring, i.e.,

$$
\left\{\begin{array}{l}
P_{Y \mid X}(0 \mid 1)=1 / 2 \\
P_{Y \mid X}(1 \mid 1)=1 / 2
\end{array}\right.
$$

and

$$
\begin{cases}P_{Y \mid X}(0 \mid 2)=1 / 4 & \text { (all male) } \\ P_{Y \mid X}(1 \mid 2)=1 / 2 & \text { (male,female) or (female,male) } \\ P_{Y \mid X}(2 \mid 2)=1 / 4 & \text { (all female) }\end{cases}
$$

and

$$
\begin{cases}P_{Y \mid X}(0 \mid 3)=1 / 8 & \text { (all male) } \\ P_{Y \mid X}(1 \mid 3)=3 / 8 & (\mathrm{~m}, \mathrm{~m}, \mathrm{f}) \text { or }(\mathrm{m}, \mathrm{f}, \mathrm{~m}) \text { or }(\mathrm{f}, \mathrm{~m}, \mathrm{~m}) \\ P_{Y \mid X}(2 \mid 3)=3 / 8 & \text { (m,f,f) or }(\mathrm{f}, \mathrm{~m}, \mathrm{f}) \text { or }(\mathrm{f}, \mathrm{f}, \mathrm{~m}) \\ P_{Y \mid X}(3 \mid 3)=1 / 8 & \text { (all female) }\end{cases}
$$

hence

$$
\begin{aligned}
H(Y \mid X) & =H(Y \mid X=1) P_{X}(1)+H(Y \mid X=2) P_{X}(2)+H(Y \mid X=3) P_{X}(3) \\
& =H(1 / 2,1 / 2) \frac{1}{3}+H(1 / 4,1 / 2,1 / 4) \frac{1}{3}+H(1 / 8,3 / 8,3 / 8,1 / 8) \frac{1}{3} \\
& =\frac{1}{3}+\frac{1}{3}\left(\frac{1}{2} \log (2)+\frac{1}{2} \log (4)\right)+\frac{1}{3}\left(\frac{1}{4} \log (8)+\frac{3}{4} \log \frac{8}{3}\right) \\
& \left.=\frac{1}{3}+\frac{1}{3} \frac{3}{2}+\frac{1}{3}\left(3-\frac{3}{4} \log (3)\right)\right) \\
& =\frac{11}{6}-\frac{1}{4} \log (3)=1.437[\mathrm{bits}]
\end{aligned}
$$

c)

$$
\begin{aligned}
H(X, Y) & =H(X)+H(Y \mid X)=\log (3)+\frac{11}{6}-\frac{1}{4} \log (3)=\frac{3}{4} \log (3)+\frac{11}{6} \\
& =1.585+1.437=3.022[\mathrm{bits}]
\end{aligned}
$$

d) We compute the joint probabilities $P_{X Y}(x, y)=P_{X}(x) P_{Y \mid X}(y \mid x)$ and construct the code tree using Huffman's algorithm as shown in Figure 1.
The resulting code table is

(X, Y)	Codeword
$(1,0)$	000
$(1,1)$	001
$(2,0)$	100
$(2,1)$	010
$(2,2)$	101
$(3,0)$	1100
$(3,1)$	011
$(3,2)$	111
$(3,3)$	1101

Figure 1: Huffman tree for Question 4.d)
e)

$$
\begin{aligned}
E[L] & =\frac{1}{6} 3+\frac{1}{6} 3+\frac{1}{12} 3+\frac{1}{6} 3+\frac{1}{12} 3+\frac{1}{24} 4+\frac{1}{8} 3+\frac{1}{8} 3+\frac{1}{24} 4 \\
& =3(1-1 / 12)+4 / 12=31 / 12=3.0833
\end{aligned}
$$

and hence

$$
\kappa_{1}=E[L] / L_{f}=3.0833 / 4=0.7708 .
$$

f)

$$
\begin{aligned}
E\left[L_{S F}\right] & \left.=\sum_{(} x, y\right) P_{X Y}(x, y)\left[\log \frac{1}{P_{X Y}(x, y)}\right] \\
& =3\left(3 \frac{1}{6}+2 \frac{1}{8}\right)+4\left(2 \frac{1}{12}\right)+5\left(2 \frac{1}{44}\right) \\
& =\frac{9}{4}+\frac{2}{3}+\frac{5}{12}=10 / 3=3.3333
\end{aligned}
$$

and hence

$$
\kappa_{2}=E\left[L_{S F}\right] / L_{H}=3.3333 / 4=5 / 6=0.8333
$$

g) When encoding database entries jointly using an arithmetic encoder, the overall codeword length will tend to the block entropy plus 2 , and hence the entropy per database entry will tend to the entropy since the effect of the added 2 divided by the number of database entries will vanish. Hence we have

$$
\kappa_{3}=H(X, Y) / L_{f}=3.0221 / 4=0.7555 .
$$

Comments on Questions

1. To be completed...
2. To be completed...
3. To be completed. . .
4. To be completed...

JS, January 2016

