
3F1, CRIBS

Question 1. The question was attempted by all but one student. Most students demon-
strated grasp of the z-transform, recall definitions and were able to perform appropriate
manipulations to find transfer functions and time-domain behaviour. The main mistakes
were forgetting technical conditions for stability and boundedness (perhaps by rushing)
and various slips in algebra.

(a)(i) System is linear and time invariant =⇒ transfer function exists.
System stable ⇐⇒ (bounded u =⇒ bounded y).

(a)(ii) The pulse response is {a0, a1, ...aN}, finite. The system is stable because: pulse
response finite, therefore absolutely bounded OR all poles are at the origin.

(b) Z-transform gives:
zȳ − zα+ aȳ = ū− bz−1ū

(since u−1 = 0). Putting uk = {1}k≥0, we have ū = 1
1−z−1 . Substituting and

rearranging:

zȳ − zα+ aȳ = (1− bz−1)
1

1− z−1

ȳ(z + a) = (1− bz−1)
1

1− z−1
+ zα

ȳ = (1− bz−1)
1

(z + a)(1− z−1)
+

zα

(z + a)

ȳ = z−1(1− bz−1)
1

(1 + az−1)(1− z−1)
+

α

(1 + az−1)

Decompose quotient on right-hand side into partial fractions:

1

(1 + az−1)(1− z−1)
=

A

(1 + az−1)
+

B

(1− z−1)
,where A = (1−a−1)−1, B = (1+a)−1

Then

ȳ = z−1

(
A

(1 + az−1)
+

B

(1− z−1)

)
− bz−2

(
A

(1 + az−1)
− B

(1− z−1)

)
+

α

(1 + az−1)

So
yk = {B +A(−a)k−1}k≥1 + b{B +A(−a)k−2}k≥2 + α{(−a)k}k≥0

(c)(i) Using part (b) with α = 0, transfer function is:

ȳ

ū
=

(1− bz−1)

z + a
= z−1 (z − b)

z + a

System is stable provided |a| < 1.

(c)(ii) Let uk = −cyk + rk and substitute into difference equation with α = 0:

yk+1 + ayk = −cyk − bcyk−1 − rk − brk−1

Take z-transform and rearrange:

zȳ + (a+ c)ȳ + z−1bcȳ = −r̄ − z−1br̄
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The transfer function is:

ȳ

r̄
= − (1− bz−1)

z + (a+ c) + z−1bc
= − (z − b)

z2 + (a+ c)z + bc

For the case where a = b, the transfer function is:

ȳ

r̄
= − (z − b)

z2 + (b+ c)z + bc
= − (z − b)

(z + b)(z + c)

The new system is stable provided |b|, |c| < 1. The new system is causal.

Question 2. Popular question, with high marks in general. The theoretical material
in (a), (b) was well received. Very few mistakes in filter design in (c), notably on the
computation of the normalised cutoff frequency and on the derivation of the difference
equation. (d) was straightforward. (e) was well answered in general but the discussion of
the phenomenon of aliasing was sometime poor or students did not apply Shannon-Nyquist
theorem properly.

(a) The bilinear transform maps stable filters into stable filters therefore Fd(z) is stable.
Every stable pole of the analog prototype is mapped into a pole whose radius is less
than or equal to one. See Figure 1.

The mapping is explained by the following mathematical argument. Given the

bilinear transform s = z−1
z+1 solve for z to get z =

1 + s

1− s . The generic pole s =

λ+ jω of the analog prototype is mapped into the pole z of the digital filter, whose
magnitude satisfies

|z|2 = zz∗ =
1 + (λ+ jω)

1− (λ+ jω)
· 1 + (λ− jω)

1− (λ− jω)
=

(1 + λ)2 + ω2

(1− λ)2 + ω2

For λ ≤ 0 (stable pole) we have (1 + λ)2 ≤ (1− λ)2. Thus,

|z|2 =
(1 + λ)2 + ω2

(1− λ)2 + ω2
≤ 1

bilinear

analog digital

1

Figure 1: Every stable pole is mapped into the circle of radius one.

(b) The frequency response of the digital filter Fd(e
jΩ) at frequency Ω corresponds

to the frequency response of the analogue prototype Fd(e
jΩ) = Fa(ψ(ejΩ)) where
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ψ(z) = z−1
z+1 (bilinear transform). Thus, Fd(e

jΩ) = Fa(jω) for jω = ψ(ejΩ). It
follows that

jω = ψ(ejΩ) =
ejΩ − 1

ejΩ + 1
=
ejΩ/2 − e−jΩ/2
ejΩ/2 + e−jΩ/2

=
j sin(Ω/2)

cos(Ω/2)
= j tan(Ω/2)

which explains the frequency warping ω = tan(Ω/2).

(c) The normalized cutoff frequency Ωc = 0.5π is obtained by setting the analog cutoff
frequency at ωc = tan(Ωc/2) = tan(π/4) = 1 From the analog lowpass filter, using
the lowpass to highpass transformation, we get

Fa(s̄) =
s̄

s̄+ ωc
=

s̄

s̄+ 1
.

Thus,

Fd(z) = Fa

(
z − 1

z + 1

)
=

z−1
z+1

z−1
z+1 + 1

=
z − 1

2z
=

1

2

(
1− z−1

)
.

The difference equations that implements the filter is obtained by antitransform

Y (z) = Fd(z)U(z) =
1

2
(1− z−1)U(z)

Z−1

⇒ yk =
1

2
(uk − uk−1)

For illustration purposes, Bode diagrams of Fa and Fd are reported in Figure 2.
Note that at ωc = 1 we have |Fa(jωc)| = −3dB, as desired, which corresponds to
the magnitude |Fd(ejΩc)| = −3dB at Ωc = 0.5π, as desired.
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Figure 2: Left - analog prototype , Right - digital filter Fd.

(d) Sampling period T = 0.01 allows for a max frequency bandwidth of ωmax = 2π
2T =

100π rad/s. Thus, for a cutoff frequency at 5 Hz, i.e. 10π rad/s, we need a
normalized cutoff frequency at Ωc = 10

100π = 0.1π rad/s . For T = 0.1, we get
ωmax = 2π

0.2 = 10π rad/s, and normalized cutoff frequency Ωc = π rad/s .

(e) By Shannon theorem, for a maximum frequency of fmax = 20 Hz, we need 2fmax <
1
T , that is, T < 1

2fmax
= 1

40 = 0.025s.
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The sampled signal spectrum is periodic with period ω0 = 2π
T rad/s, as represented

in Figure 3 (left) where ω0 is the sampling frequency. Bandlimited signals with
max frequency ωmax can be exactly reconstructed from their samples if 2ωmax < ω0

(using a low pass filter) since this condition prevents overlap of the periodic signal
spectrum. If 2ωmax < ω0 is not satisfied, distortion on the spectrum may occur, as
shown in Figure 3 (right). This phenomenon is called aliasing. In such a case, the
original signal cannot be reconstructed since the original high frequencies are lost.

ωmax−ωmax

|Gs(jω)|

ω0 ωmax−ωmax

ω0

Figure 3: Left - Periodicity, no aliasing. Right - effect of aliasing on the spectrum.

Question 3. The question was attempted by a large number of students. Simple errors
with complex numbers manipulation in (b). (c) and (d) were well answered with some
students using the wrong frequency on the Bode diagram. Many issues with (e), either in
the selection of the Nyquist diagram or in the application of the Nyquist criterion. Most
students provided the right answer to (f) but explanations were incomplete.

(a) Directly from the expression

Y (z) = γ
(
1 + z−1 + z−2

)
U(z) ⇒ G(z) = γ

(
1 + z−1 + z−2

)
(b) Method 1: compute the impulse response: g0 = γ, g1 = γ, g2 = γ, gk = 0 for k ≥ 3.

Thus

ḡp =

3∑
k=0

gke
−j 2πk

4
p = γ

(
e−j

2π0
4
p + e−j

2π1
4
p + e−j

2π2
4
p
)

= γ
(

1 + e−j
π
2
p + (−1)p

)
.

Method 2: note that

ḡp =
3∑

k=0

gke
−j πk

2
p =

3∑
k=0

gkz
−k

for z = ej
π
2
p. The FIR filter satisfies gk = 0 for k ≥ 3 therefore

3∑
k=0

gkz
−k =

∞∑
k=0

gkz
−k = G(z)

for z = ej
π
2
p. Thus,

ḡp = G(ej
π
2
p) = γ

(
1 + e−j

π
2
p + (−1)p

)

(c) For γ = 1 we have G(z) = 1 + z−1 + z−2 =
z2 + z + 1

z2
.

Bode Diagram C must be excluded since |G(ej0)| = |G(1)| = 3 (' 9.54 dB) which
is not compatible with Bode Diagram C at frequency θ = 0.
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Bode Diagram B must be excluded since G(z) has two complex conjugate zeros at

z = −1
2 ±

√
3

2 i, whose magnitude |z| = 1 (on the unit circle). Zeros on the unit
circle guarantee that |G(ejθ)| = 0 (=−∞ dB) for some 0 ≤ θ ≤ π.

Bode Diagram A is the Bode diagram of G(z).
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(d) By the final value theorem, using linearity, the steady state response for uk = 2 is

yss(k) = 2G(1) = 6γ .

Note that the steady state can be estimated directly from the Bode diagram, with-
out any computation: ∠G(ej0) = 0; |G(ej0)| ' 10 + 20 log10(γ) dB is an acceptable

approximation. Thus, yss(k) ' 2 · γ · 10
10
20 ' 6.32γ.

For uk = cos(2k) the steady state output

yss(k) = |G(e2j)| cos(2k + ∠G(e2j)) .

From the Bode diagram, |G(e2j)| ' −16 + 20 log10(γ) dB = γ · 10
−16
20 ' 0.16γ and

∠G(e2j) ' −0.64π.

(e) Diagram B is the correct one.

From the Bode diagram, ∠G(ej0) = 0 but the Nyquist locus of Diagram A has
initial phase −π

2 .

From the Bode diagram, |G(ejθ)| = −∞ dB for some θ but the Nyquist locus of
Diagram C never goes to 0.

The open loop is asymptotically stable. Therefore, by Nyquist criterion, the closed
loop is stable if the Nyquist locus does not encircle the point −1. Thus,

– the closed loop is stable for any γ > 0 (no encirclements)

– For γ < 0, we study the Nyquist locus of −G(z), which corresponds to the
Nyquist locus of G(z) rotated by 180 degrees. In such a case, the closed
loop is stable if −1

3 < γ ≤ 0 (no encirclements). For γ ≤ −1
3 the number

of encirclements is not defined or larger than 0. Thus the closed loop is not
asymptotically stable.
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(f) The closed loop transfer function from r to y is given by

W (z) =
G(z)

1 +G(z)
=

z2+z+1
z2

1 + z2+z+1
z2

=
z2 + z + 1

2z2 + z + 1
.

The transfer function has complex conjugated poles in z = −1
4 ±

√
7

4 i. Poles are not
all at zero thus the filter is not FIR.

Question 4. The question was attempted by half of the students. The marks were very
bimodal in the sense that if the student knew the material they were able to get a good
mark and complete most of the question. Most were able to recall basic definitions but
around one third were unable to apply the concepts, or forgot important relationships
(such as Weiner Khinchin theorem) and did poorly.

(a)(i) rXX(t1, t2) = E[X(t1)X(t2)] =
∫ ∫

x1x2f(x1, x2)dx1dx2, where x1 and x2 are the
values of the random process sampled at times t1, t2 respectively, f is the joint
PDF for x1 and x2, and E is expectation (integral not necessary). A process is
WSS if the mean is independent of time and autocorrelation function depends only
on τ = t2 − t1.

(a)(ii) A WSS process is mean and correlation ergodic if mean and correlation functions
computed over ensembles are equal to the respective values computed by averaging
over time, i.e:

E[X] = 〈X(t)〉T = lim
T→∞

1

2T

∫ T

−T
X(t)dt

rXX(τ) = 〈X(t)X(t+ τ)〉T = lim
T→∞

1

2T

∫ T

−T
X(t)X(t+ τ)dt

(b)(i) Defining properties of white noise process: zero mean; autocorrelation function
equal to delta function.

(b)(ii) First compute the response function of the system. Taking Fourier transform of the
ODE:

jωCV̄ + (1/R)V̄ = Ī
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(where I is input current). Thus:

H(ω) =
1

jωC + 1/R
=

R

jωRC + 1

and so

|H(ω)|2 =
R2

(ωRC)2 + 1

Using the formula derived in lectures the PSD of V is:

SV = |H(ω)|2Sε = |H(ω)|2P0 =
P0R

2

(ωRC)2 + 1

(b)(iii) Recall from lecture 15:

rV V (0) =
1

2π

∫ ∞
−∞
SV (ω)dω

(obtained by computing inverse Fourier transform in definition of PSD.) Therefore,

rV V (0) =
1

2π

∫ ∞
−∞

P0R
2

(ωRC)2 + 1
dω =

P0

2π

∫ ∞
−∞

R2

(RC)2(ω2 + 1/(RC)2)
dω

=
P0

2πC2

[
RC tan−1(RCω)

]∞
−∞

=
RP0

2πC

[
π/2 + π/2

]
=
RP0

2C
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