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EGT2
ENGINEERING TRIPOS PART ITA

Friday 22 April 2016 9.30to 11

Module 3F3
SIGNAL AND PATTERN PROCESSING - SOLUTIONS

Answer not more than three questions.
All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 Examiner’s comments:

This question was found reasonably straightforward by most, though hardly anyone could
sketch the phase response in part (a)(iii). Similarly in (b)(i) a surprising number of
students could not find the 8th roots of unity.

(a) A complex-coefficient digital filter has a transfer function of the following form:

H(Z) _ Z_l _ rexp(—j¢)

~ 1—z"rexp(j9)

(i)  Sketch the pole-zero diagram for such a filter when r = 0.7 and ¢ = /4. [10%]
Solution:

1 zero at r1e/?. 1 pole at rel?:

(i) Determine the frequency response of such a filter for any (r,¢) and show

by geometrical arguments from the pole-zero diagram, or otherwise, that all
frequencies are passed with equal gain, i.e. the filter is all-pass. [25%]
For frequency response substitute z = e/ 9.

_ e % —rexp(—j9)
 1—e7i%rexp(j9)

H(e?)

Gain of filter is:

o |e~1% — rexp(—io)|
) = e Trexplio)
e 7 —rexp(—jo)

e rexp(jo)|

see diagram:
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(iii) Sketch the phase response of the above filter when r = 0.95 and ¢ = /4,

for a range of normalised frequencies from O to 27. Your justification should

be geometric and based on the pole-zero diagram; you may utilise the fact that
pole/zero pairs are close to each other (and the unit circle) when r = 0.95. [20%)]
Solution:

Use the standard result that phase response is the angle of e/ ® _ ¢ minus the angle

of e/9 — d, where c is the zero of the filter and d is the pole. But note that there is

an extra T — ¢ term since:

H(z) = (0= 1/rexp(j)) _ rexpl(j(x=¢))(z—1/rexp(j¢))

z—rexp(jo) z—rexp(j¢)

The first observation is that the pole and zero are close together, so that the phase
from the pole/zero term is nearly zero when we are far from the pole/zero on the unit
circle. Moreover, as we approach 6 = ¢, the phase sharply decreases by decreases
by 27:

Page 3 of 16 BAD PAGEBREAK



Version SJG/1

(b)

150 — — .
[€————————— Nole initial value of r-¢
=,

MNole -27 phase shift as /4 is passed |

L . i s ks . . L E:| |
o 01 02 03 0.4 0.5 0.6 07 08 09 1
Normalized Frequency (x« rad/sample)

(iv) Explain how a real-coefficient filter can be generated from a combination

of two such structures, retaining the all-pass property but with modified phase
response. [10%]
Solution:

We cascade it with a second all-pass complex filter having pole at r,—6, hence
providing pole-zero conjugate pairs for the first filter. Thus the coefficients are real

but it is still all-pass.

(1) A second digital filter has the following transfer function:

1— Z_P
H(7)— — >

where 0 < r < 1 and P > 1 is an integer.

A.  Sketch the pole-zero diagram for this filter when P = 8 and r = 0.8. [10%]
Solution:
Poles are at:

_P: 1,

i.e.

z:rl/})eiz”p/P7 p=0,12,..
Zeros similarly are at
Z:eian/P’ p=0,1,2,..

Pole-zero diagram:
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B.  Sketch also the frequency magnitude response of this filter when r is close

to 1, and hence suggest an application for such a filter. What trade-off would

be made by choice of the value of r?

Solution:

[25%]

Pole and zero pairs are close to each other, so gain is approximately unity when

distant from a zero/pole (ratio of distances is approximately 1). When moving

close to a pole on the frequency axis (unit circle) the gain drops sharply to zero

as it passes through the zero. Hence plot looks like:

2

0
2
4
5
El

Magnitude (4B)

Normalized Frequency (xa radésample)

This is a filter with multiple nulls at integer multiples of 27t /P. Hence it can

filter out periodic disturbances, e.g. mains noise by appropriate choice of the

fundamental frequency 27 /P. With r approaching 1 we get excellent frequency

magnitude response, at the expense of poor time domain transient response

(since poles cause components in the impulse response with envelope rky.
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2 Examiner’s comment:
Attempted by nearly all candidates with very good results in general.

The discrete Fourier transform (DFT) of a sequence x,,, n =0,1,...,N — 1 is given by:

N—1 ;
jnp2m
n=0
(a)  Show that the DFT spectrum values X, are related to the true DTFT spectrum
X(eje) of xp, n = —oo,...,—1,0,1,2..., o, by the following convolution formula:
1

2
0 i(p(2m/N)—0
Xp =5 /0 W (e/®) X (e/(P27/N)-6)) 49
where W(ej 9) is the DTFT of the appropriate rectangular window function. What
frequency, in rads/s would correspond to 6 = 0.2, if the digital sampling frequency
is 44.1kHz?

(b) Explain with the aid of diagrams how the DFT modifies the DTFT spectrum of
a complex exponential signal exp( jayt) where @y is a fixed frequency. Describe the
effects of spectral smearing and spectral leakage, how the use of window functions
might aid the analysis, and why this is important for analysis of multiple frequency

components.

(c) Show that when N is even, the DFT of a data sequence x;, may be expressed

in the form:
where A, and B, are DFTs of length N/2 sub-sequences of x;, and W is a suitable

complex exponential (you should derive the formulae for Aj, B, and W).

(d) Explain briefly how the representation in (c) above allows a very efficient
implementation of the DFT when N is a power of 2. Show that the computational
load, neglecting additions, is approximately (N /2)log,(N) complex multiplications
and additions. How does this compare with direct evaluation of the DFT?

SOLUTION:

(a) Consider applying a recangular window w, = 1,n = 0,1,....,N — 1 to the
signal and x; and take the DTFT:

Xw(eij) _ Z {xnwn}e_j”wT

Nn—=—o0
N-1 )

— Z{xn}e_anT
n=0
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and clearly this is equal to the DFT when we evaluate at @, = 27p/N.

Now, proceeding from the first line:

; i 1 2« ; . ;
X joTy _ _/ jo Jnede —jnoT
w(e/9) n:Z_wxp{zn A W(e!%)e e
L 2m 0y v o —jn(@T—8
= E/O W (e’ )n:Z_ooxne Jn )de
; 1 2« , ,
Xy (el9T) = /O W(e/®) X (e/(©T=0)) g9

and evaluating this at discrete frequencies @, = p27/N gives the required result.
[Knowledgable students could quote this result directly using the discrete time

convolution theorem].
Now, the frequency at 6 = 0.2 is 0.2 x 44100/27 = 1404Hz.

(b) This is part is standard bookwork. Based on result of part (a) we see that
the delta-funtions of the pure complex exponentials are convolved with the window
spectrum, leading to spectral smearing and spectral leakage. Window functions
from e.g. generalised Hamming families will increase specral smearing but can
dramatically improve spectral leakage through much lower sidelobe levels. Suitable
diagrams from lecture notes are:

Rectangular Window Spectrum

“I : ;'. Central "Lobe’
= o) ' Sidelobes
N=32 = |
'.c}:,- .|
" y -I_ , |
0
N=32 & R R B
N=16 - B T S o e — ! Lobe width
= - - B ; . - | inversely
proportional
N=8 . ; : tT to N
N=4
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Now, imagine what happens when the sum of two frequency components is DFT-ed:

xn = exp(jwinT) + exp(jwonT)
The DTFT is given by a train of delta functions:
X(eT) =25 7 §(wT + 2nm — i T) + 8(wT + 2nm — woT)

n=—0o0

Hence the windowed spectrum is just the convolution of the window spectrum with
the delta functions:

Now consider the DFT for the data:

Both components
separately % ; . : ' | ! :

4 3 4
W @,T
Both components g :
Together £ ; . : : : ,
30k ||'“\ |"]|I _
L ' \' i
# { ‘ ik /Cum:cnenlz
-3 Component 1—.___ - |' | | ‘ p i
| it |
A e ]
|
0= } II ‘I || 1
fl N
[l [
5l AT | L A -
AT AN B AN oy om
, wAAAAAAAAAYVYVV Y LY L AT Y VAN
4 3 E 1 % 2 3 4
. St (DT
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(c) First rewrite the DFT equation in terms of the even-indexed and odd-indexed

data x;,:
N_4 N 4
5 —jZE (2n)p A —j3E@n+1)p
Xp = Xppe TN + ), xouyie IN
n=0 n=0
51 2 51 2
. T . T
—Jahp | — 2% —J np
= Z Xop€ (N/2) +e JNP Z Xop4-1€ (N/2)
n=0 n=0
where
N
2 _ . 2m np
Ap= Z xope (N/2)
n=0
. 2
n
By=Y xpyire MY
n=0
_inm
W=e /N
Look at the DFT values X, , v /5:
XpiN)2
51 2
—j =l 2
_ Z Xo, e J(N/z)”(p+N/)
n=0
51 2 N
_i2n —jrasn(p+y
LR Y o LTI
n=0
51 2
. T
=Y xp,e 'Y
n=0
51 2
_i2rn —j e np
e INPY xypge (W2
n=0

[Here we have used the results: exp(i(0 +27)) = exp(i@) and exp(i(0 + 7)) =
—exp(i0).]

(d) Repeated application of the above procedure to each of the subsequence DFTs
successively reduces the computation of the N-DFT to N single point DFTs, with
no computational burden. The remaining computations are calculated as follows:
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*Each stage of the FFT reduces computation by half but introduces an extra %
multiplications W7 B,

For N = 2M | the process can be repeated M times to reduce the computation to
that of evaluating N single point DFTs which requires no computation.

*However, at each of the M stages of reduction an extra % multiplications are
introduced so that the total number of complex multiplies required to evaluate
an N-point DFT is:

N N
> X (Number of levels) = 3 log,(N)

Compare with the DFT,which has roughly N 2 complex multiplications. We see
that for large N there are very significant savings from use of the FFT.
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3 Examiner’s comment:

Popular question, with high marks in general. Lots of people did not know how to find
average energy within a frequency band in part (a). Part (b)(ii) éAS lots of candidates
stated the result for the case when y is stationary, which lost some credit and made part (iii)
awkward to demonstrate convincingly. In (b)(ii1) many people were careless in checking
the condition for finite variance and many forgot to check constant mean.

(a) For a discrete-time random process, explain the concept of stationarity and
ergodicity, and define the terms autocorrelation function, wide-sense stationarity

and power spectrum. Show how to obtain the average power of a real-valued process
between two normalised frequencies @ and w,, with 0 < w; < @, < 7. [30%]
SOLUTION:

Stationarity: a process is stationary if the the statistical characteristics centred at

one time cannot be distinguished from those at any other time.

Ergodicity: an ergodic process ‘forgets’ its initial conditions with time and always
converges on a stationary distribution of values.

Autocorrelation function (ACF):

Rxx[n,m] = E[X;, Xp]

Wide-sense stationary (WSS) : ACF depends only on time difference m — n, mean
is constant over time, and variance is finite.
Power spectrum Sy is the DTFT of the ACF for a WSS process.

Calculate power as:

(05) .
2 / Sx(e/?T)dow

@
(b) A random process {y,} is passed through a causal linear system having

impulse response Ay, = o

—+oco
in = Z hmyn—m.

m=0

(1)  Show how the linear system may be implemented as a first-order infinite

impulse response (IIR) digital filter. [10%]
The z-transform of the impulse response is:
1
1—oz!

so this can be implemented as

In =02z 1+Yn
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(i) If {y,} has autocorrelation function E|y,y;] = Ryylk,l], find an
expression for the cross-correlation function between {y,} and {z,}, and also

the autocorrelation function of the output process {z, }. [20%]
SOLUTION:

Note that we haven’t yet stated that {y, } is stationary, so:

Ryzlk,1] = E[yiz/]

=Er Y, hmyi—m)

m=0

=E[Y hmypyi—m]

m=0

=Y hmRyylk,l—m] =Y o"Ryy[k,l—m)]

Rzz1k,1] = E[zz)]

= E[Z hnyi—n Z hnyi—m)
n=0 m=0

=Y Y huhmRyylk—n,l—m)
n=0m=0

= Z Z (Xn+mRyy[k—n,l—m]
n=0m=0
(iii) If {y,} is wide-sense stationary, show that {z,} is also wide-sense
stationary, provided the condition |¢¢| < 1 applies. [Hint: the largest value of

the autocorrelation function is always at lag zero.] [20%]
Check mean of {z,}:

Elza) =E[Y, hmYi—m| = Y, hmbiy
m=0 m=0

which is constant since it does not depend on n.

Autocorrelation function:

Rzz[k, l] = Z Z OCnerRyy[k—n,l—m] = Z Z OCn+mRyy[l —m+n—k]
n=0m=0 n=0m=0

which depends only on the lag difference [ — k, since the n and m variables are

summed out.
Check variance of z:

Rzz[k,k] = i i ot Ryy [n— m]

n=0m=0
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Now, |Ryy[n —m]| < Ryy|[0], since the maximum autocorrelation value is at lag

0. Hence:

Rzglk k< Y, ¥ 1o " Ryy[0]=Ryy[0] ¥ Y oI =Ryy[0] ¥ 10| Y |o”]
n=0m=0 n=0m=0 n=0 m=0

and both sums are finite only for |a| < 1 - can check by summing GPs.

Hence 6% = Rzzlk, k] — /.L% is also finite under the same condition and the

process is WSS.

(iv) If {y,} is zero-mean white noise with variance 1, and || < 1, determine

the power spectrum of {yj, }, the autocorrelation function for {z, } and the power
spectrum of {z, }. Sketch the power spectrum Sz (exp(j0)) for o = 0.8 over the

range of normalised frequencies 6 = 0 to 2. [20%]
SOLUTION:

Power spectrum of {y, } is just flat:

Sy(e?) =1

Easiest way to the power spectrum for {z} is through the frequency domain,
and using the filtering result from part (b):

1

Sy =|H(e/9)*Sy(e/®) = ————
2= ) Psy(e) =

though it could also be got as the DTFT of the autocorrelation function.
The sketch will look like this, with a resonance at zero and 27 corresponding
to the single pole at z = «, i.e. at zero frequency:

30

0 1 2 3 4 5 6 7

The autocorrelation function is:

RzzI81= Y Y a"™ "Ry —m+n]=a® Y oa¥=a’/(1-a?)
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4 Examiner’s comment:
The least popular question, but well handled by most.

Consider the k-means clustering algorithm which seeks to minimise the cost function

N K 5
C= Z Z Snkl[xn — my||
n=1k=1

where my, is the mean (centre) of cluster &, x, 1s data point n, s,; = 1 signifies that data
point n is assigned to cluster k, and there are N data points and K clusters.

(a)  Given all the cluster assignments s,,; (with the constraint that each data point
must be assigned to one cluster, that is, Yz s, = 1 for all n, and s,,;, € {0, 1} for all
n and k), derive the value of the means {m; } which minimise the cost C and give an
interpretation in terms of the k-means algorithm. [30%]

(b) Give an interpretation of the k-means algorithm in terms of a probabilistic
model. Describe up to three generalisations based on this probabilistic model. [40%]

(¢)  You are applying the k-means algorithm to a large collection of images, where
most of the images are not labelled, but you have labels for a few of the images (e.g.
“cat”, “dog”, “person”, “car”’). You would like to modify your k-means algorithm
so that images with the same label are always in the same cluster, and images with
different labels are never in the same cluster. Describe a modified version of the

algorithm that would do this. [30%]

SOLUTION

(a) Given the cluster assignments, the problem decomposes into separate
minimisations over each mean k, that is, C = } ; C;. Since the cluster assignments
are binary, for each mean we have a cost function

N
2 2
Cr =Y sullxn—mel|” =Y [l —my]]
n=1 n:sy=1
Minimising over my, results in

_ Zn:snkzl Xn

my
YnSnk
which is simply the Euclidean mean of the data points assigned to cluster k.

(b) The k-means algorithm is closely related to the Gaussian mixture model, a
probabilistic model for density esimation. In fact, the k-means cost is equal up to
a constant to the (negative) log likelihood of a Gaussian mixture model under the
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following assumptions: (1) the Gaussians have means m;, and covariances that are a
multiple of the identity matrix, (2) the Gaussians all have equal mixing proportions,
(3) the assignment variables which are actually hidden are treated as parameters
and optimised rather than summed out. Upto these three constraints, k-means is
almost identical to the EM algorithm. Once this relationship is established several
generalisations become possible: (1) using different covariance matrices for each
cluster to allow for elongated clusters at different orientations, (2) allowing different
mixing proportions so that some clusters can be bigger than others, (3) handling
partial membership of data points in clusters by accounting for the uncertainty in the
assignment variables s,;;, (4) use of models other than the Gaussian to capture each
cluster (e.g. mixtures of any other distribution), and (5) Bayesian generalisations
whereby the number of clusters can be learned from data, and the uncertaintly in
clustering is represented in the inference.

(c) Assume that the number of clusters K is equal or greater than the number of
labels (otherwise the constraints can’t be satisfied). Initalise assignments so that the
labelled images belong to separate clusters (e.g. all “cats” in cluster 1, all “dogs”
in cluster 2, etc). Run the k-means algorithm as before on all the unlabelled data,
but ensure that the assignments for the labelled data remain unchanged. Since the
constraints are imposed at initialisation and kept at each iteration, this will converge
to a solution which is a (local) minimum of the cost C subject to the imposed
constraints.

END OF PAPER
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