
Q1a-i. The transition probability matrix P of the Markov chain with outputs
{A,B} is

P =

[
0.7 0.3
0.1 0.9

]
.

Check that matrix P has stationary probability mass function π = [p(A), p(B)] =
[0.25, 0.75] by checking that πP = π. Note that πP is finding the values of
p(in+1) using the equation

p(in+1) = p(in+1|A)p(A) + p(in+1|B)p(B).

Q1a-ii. By the Markov property, p(i2n|i2(n−1), i2(n−2), . . . , i0) is p(i2n|i2(n−1))
since the future behaviour of the process once it has arrived at state i2(n−1) at
time 2n− 2 does not depend on the precise trajectory it took to arrive at state
i2(n−1).

We have to compute

p(in|in−2) =
p(in−2, in)

p(in−2)

=

∑
in−1∈{A,B} p(in−2, in−1, in)

p(in−2)

=
∑

in−1∈{A,B}

p(in−1, in|in−2)

=
∑

in−1∈{A,B}

p(in−1|in−2)p(in|in−1) (Markov property)

for in−2 = A, in = A and in−2 = A, in = B. Other values can be recovered
since p(in|in−2) is a probability mass function for each in−2. This calculation is
equivalent to computing P 2 since row in−2 and column in of the matrix P 2 is

[p(A|in−2), p(B|in−2)]
[
p(in|A)
p(in|B)

]
which is precisely

∑
in−1∈{A,B} p(in−1|in−2)p(in|in−1)[

0.52 0.48
0.16 0.84

]
.

Q1b-i.

ϕX(t) =

∫ ∞
−∞

eixtfX(x)dx.

Let FX(f) denote the Fourier transform of fX . So FX(f) = ϕX(−f).

ϕX(t) = FX(−t) = absinc2(−tb/2) = 4ab sin2(−tb/2)/t2b2.
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Q1b-ii. Using 2 sin2 x = 1− cos(2x),

ϕX(t) =
2a

t2b
(1− cos(tb))

=
2a

t2b
(1− cos(tb))

=
2a

t2b

(
t2b2

2!
− t4b4

4!
+
t6b6

6!
+ . . .

)
= ab

(
1− t2b2

12
+
t4b4

360
+ . . .

)
Relate characteristic function derivatives to moments: inE(Xn) =

(
dn

dtnϕX(t)
)
t=0

.
So E(X0) = ab which should be 1. E(X2) = ab3/6 = b2/6. E(X4) =

ab5/15 = b4/15.
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Q2a. Your answer should state the definition of strict sense and wide sense
stationary.

Strictly stationary requires that p(xn, . . . , xm) = p(xn+k, . . . , xm+k) for all
n, m ≥ n, and k. This implies any two sections of the process is identically
distributed. In the lectures we have seen how this is an unrealistic assumption
ifXn describes the average temperature of a particular day n of the year because
strict stationary implies the average daily temperature in summer and winter is
the same, which is clearly inappropriate.

Wide sense stationary does not require equality of the probability distribu-
tions of the any two sections of the process but just that process’ first and second
oder statistics do not change with time. To see why this a more appropriate
assumption, in the lectures we saw how the process Xn = sin(f0n+ φ) where φ
is a randomly distributed phase, drawn uniformly from (0, 2π), is WSS but not
strictly stationary.

Q2b. We may write

Yn =

∞∑
i=−∞

hiXn−i.

We see that E(Yn) = 0 since input process has zero mean.

YnYn+k =

∞∑
i=−∞

∞∑
j=−∞

hiXn−ihjXn+k−j

and

E {YnYn+k} =
∞∑

i=−∞

∞∑
j=−∞

hihjE {Xn−iXn+k−j}

=

∞∑
i=−∞

∞∑
j=−∞

hihjcδ(k − j + i)

= c

∞∑
i=−∞

hihk+i.

Here δ(l) = 0 for l 6= 0 and δ(0) = 1. We see that E {YnYn+k} does not depend
on n but depends on k only. Let RY (k) = E {YnYn+k} .

Q2c. Using hi = a exp(−ib) for non-negative i, for k ≥ 0

RY (k) = c

∞∑
i=−∞

hihk+i = ca2 exp (−kb)
∞∑
i=0

exp (−i2b) = ca2 exp (−kb)
1− exp(−2b)

.

Also RY (−k) = RY (k).
Q2d.

∞∑
k=−∞

e−|k|be−j2πfk =
1

1− e−bej2πf
+

1

1− e−be−j2πf
− 1

3



by splitting the sum into two geometrical series. Further simplification possible.
Then multiply the expression on the RHS with ca2

1−exp(−2b) to get the PSD SX(f).
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1 (a) A source generates a stream of symbols Sn, n = 0,1, . . . and each symbol
takes one of two possible values, either A or B. The probability of symbol Sn depends
only upon the value of symbol Sn−1. Let p(in|in−1) denote the probability that Sn = in
given Sn−1 = in−1. These probabilities are given in the following table.

p(in|in−1)

Sn−1 = A Sn−1 = B
Sn = A 0.7 0.1
Sn = B 0.3 0.9

(i) Let p(i0) denote the probability that S0 = i0. Explain how p(in), the
probability that Sn = in, may be calculated. [10%]

(ii) Show that the stationary probability distribution, for which p(in = A) =
p(i0 = A), is given by [10%]

p(in)
in = A 0.25
in = B 0.75

(iii) Show that the random process S0,S2,S4, . . ., generated by the same source
but retaining only source symbols with even time indices, is a Markov chain, and
determine its transition probability matrix. [30%]

(b) The characteristic function of a random variable X is defined using the mathematical
expectation E as ϕX (t) = E[exp(iXt)] where t is a real number.

(i) Let X have probability density function fX (x). Determine the relationship
between ϕX (t) and the Fourier transform of fX (x). [10%]

(ii) Let fX (x) be the following triangular shaped function

fX (x) = 1/b
(

1− |x|
b

)
for |x| ≤ b

and fX (x) = 0 for |x|> b. Determine ϕX (t) (using the Data book). [10%]

(iii) Express ϕX (t) as a power series in t and hence find E[X0], E[X2] and E[X4]. [30%]
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2 (a) For a random process Xn, n = 0,1, . . . explain the difference between strict
and wide-sense stationary (WSS). Why might WSS be the more practical assumption for
modelling of a real-world physical process? [20%]

(b) A zero-mean random process Xn has autocorrelation function RX (k) = c for k = 0
and RX (k) = 0 for |k| > 0, where c is a constant. It is passed through a linear system
with infinite impulse response {hn}∞n=−∞. If Yn denotes the output process, find an
expression for the autocorrelation function RY (k) of the system output in terms of the
impulse response and c. [30%]

(c) Find RY (k) when hn = 0 for n < 0 and

hn = aexp(−nb)

for n≥ 0, where a,b are positive constants. [25%]

(d) Determine the power spectral density of the random process Yn. [25%]

make one of these a show that?
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3 A stationary, ergodic random process {Xn} is measured over a time interval n =

0, 1, ..., N−1, leading to a measured vector of time samples:

x = [x0 x1 ...xN−1]
T .

It is required to estimate an unknown quantity θ relating to {Xn} using an estimator θ̂(x)
which is a function of the measured data.

(a) Define the terms bias and variance for the estimator θ̂ . [15%]

Solution:

Bias is E[θ̂ ]−θ

Variance is E[(θ̂ ]−E[θ̂ ])2], , where expectations are taken with respect to p(x|θ).

(b) The mean and autocorrelation function for the process are to be estimated according
to the formulae:

µ̂ =
1
N

N−1

∑
n=0

xn

and

R̂X [k] =
1

N− k

N−1−k

∑
n=0

xnxn+k, (k ≥ 0)

Explain why these estimation formulae are valid, given the stated assumptions about the
process. [10%]

Solution:

The process is ergodic and stationary, hence it is appropriate to estimate mean and
autocorrelation functions directly from one vector of measurements x.

(c) Show whether each estimator is unbiased or not. [30%]

Solution:

E[µ̂] = E
1
N

N−1

∑
n=0

xn =
1
N

N−1

∑
n=0

Exn =
1
N

N−1

∑
n=0

xn =
1
N

N−1

∑
n=0

µ = µ

hence unbiased.

ER̂X [k] = E
1

N− k

N−1−k

∑
n=0

xnxn+k =
1

N− k

N−1−k

∑
n=0

Exnxn+k =
1

N− k

N−1−k

∑
n=0

RX [k] = Rx[k]

hence also unbiased.
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(d) The mean value of the process is now assumed to be zero. Some autocorrelation
function values are now estimated according to the above estimation formula, leading to:

R̂X [0] = 10.5, R̂X [1] =−9.1, R̂X [2] = 7 .

It is required to predict the next value of the signal based upon previous values using a
linear filter:

x̂n+1 = h0xn +h1xn−1

Assuming that the estimated autocorrelation values are accurate, determine the
coefficients h0 and h1 such that the mean-squared prediction error E[(x̂n+1− xn+1)

2]

is minimised. [30%]

Solution:

Let
ε = (x̂n+1− xn+1) = (h0xn +h1xn−1− xn+1)

Then

E = E[(x̂n+1− xn+1)
2] = E[ε2]

Then,
∂E
∂hi

= E[2ε
∂ε

∂hi
]

for i = 0,1.

But,
∂ε

∂h0
= xn,

∂ε

h1
= xn−1,

So

∂E
∂h0

= E[2εxn] = E[2(h0xn +h1xn−1− xn+1)xn] = h0RX [0]+h1RX [1]−RX [1]

∂E
∂h1

= E[2εxn−1] = E[2(h0xn +h1xn−1− xn+1)xn−1] = h0RX [1]+h1RX [0]−RX [2]

where we have used the result RX [k] = RX [−k].

Setting both partial derivatives to zero we get:

h0RX [0]+h1RX [1] = RX [1]

h0RX [1]+h1RX [0] = RX [2]
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or, [
RX [0] RX [1]
RX [1] RX [0]

][
h0
h1

]
=

[
RX [1]
RX [2]

]
Rh = r

Hence, plugging in the given estimates of autocorrelation,[
10.5 −9.1
−9.1 10.5

][
h0
h1

]
=

[
−9.1

7

]

i.e.
h0 =−1.16, h1 =−0.34

(e) Determine the mean-squared prediction error of this optimal filter and compare it
with a filter which takes the previous value of the process as the prediction, i.e. x̂n+1 = xn,
commenting on why this simpler estimator would not be expected to perform well. [15%]

Solution:

Mean-squared prediction error for optimal filter is, using formula from notes:

E[ε2] = RX [0]− rT R−1r = 2.31

For the simple filter however, ε = xn− xn+1, and

E[ε2] = E[(xn− xn+1)
2] = 2RX [0]−2RX [1] = 39.2

This is a very poor choice of estimator since the sequence is negatively correlated, so xn+1
is nowhere near xn on average.

4 (a) A pilot tone in an RF communications channel is measured at the receiver in
the following form:

Xn = A+Bsin(ωn)+Vn

where {Vn} is a white Gaussian noise process with zero mean and variance σ2
V , ω < π

is a known frequency of transmission, A is an unknown DC offset and B is an unknown
received signal amplitude. It is required to estimate A and B from a measured vector of
samples from the process {Xn},

x = [x0 x1 ...xN−1]
T .
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For a particular set of parameter values A = a and B = b, show that the total squared error
term ε = ∑

N−1
n=0 (xn−a−bsin(ωn))2 can be expressed in terms of the unknown parameter

vector θ = [ab]T as
ε = xT x−2xT Gθ +θ

T GT Gθ

where G should be carefully defined. [20%]

Solution:

We can write, as in lectures:
ε = |x−Gθ |2

where 

1 0
1 sin(ω)

1 sin(2ω)

1 sin(3ω)

... ...

1 sin((N−1)ω)


=
[
g1 g2

]

where the columns will be referred to later.

Expanding:

ε = xT x−xT Gθ −θ
T GT x+θ

T GT Gθ = xT x−2xT Gθ +θ
T GT Gθ

as required, since xT Gθ = θ T GT x (they are both scalar quantities and one is the
‘transpose’ of the other).

(b) Show that the Maximum Likelihood estimator for the parameter vector is found by
maximising the following expression:

−0.5N log(2πσ
2
V )−

1
2σ2

V
ε

and hence that the ML estimator is

θ
ML = M−1b

where
b =

[
∑

N−1
n=0 xn ∑

N−1
n=0 sin(ωn)xn

]T

M =

 N sin(Nω/2)
sin(ω/2) sin(ω(N−1)/2)

sin(Nω/2)
sin(ω/2) sin(ω(N−1)/2) N/2− sin(Nω)

2sin(ω)
cos(ω(N−1))


[40%]
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You may find the following result helpful:

N−1

∑
n=0

exp(inb) = exp(i(N−1)b/2)
sin(Nb/2)
sin(b/2)

Solution:

The error term vn = xn−A−Bsin(nω) is Gaussian zero mean white noise, with variance
σ2

V . Hence its probability is:

p(v)=
N−1

∏
n=0

N (vn|0,σ2
V )=

N−1

∏
n=0

1√
2πσ2

V

exp(− 1
2σ2

V
v2

n)=
1√

2πσ2
V

N exp(− 1
2σ2

V

N−1

∑
n=0

v2
n)

But the change of variables x = Gθ + v has unity Jacobian (θ and G considered fixed),
so the likelihood is:

p(x|θ) = 1√
2πσ2

V

N exp(− 1
2σ2

V

N−1

∑
n=0

(xn−a−bsin(ωn))2 =
1√

2πσ2
V

N exp(− 1
2σ2

V
ε)

and the log-likelihood is:

−N/2log(2πσ
2
V )−

1
2σ2

V
ε

which we must maximise to find the ML solution.

This is equivalent to maximising ε , so differentiate and set to zero:

dε

dθ
= 2GT Gθ −2GT x = 0

or,
θ

ML = (GT G)−1GT x

(the familiar OLS solution)

and then the the forms of M and b correspond to calculating the specific form of GT G
and GT x for this model. Working this through:

Let G =
[
g1 g2

]
where g1 and g2 are the columns of G. Then,

M = GT G =

[
gT

1 g1 gT
1 g2

gT
2 g1 gT

2 g2

]

Now,
gT

1 g1 = N
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gT
1 g2 = gT

2 g1 =
N−1

∑
n=0

sin(nω) = I
N−1

∑
n=0

exp( jω) = sin((N−1)ω/2)
sin(Nω/2)
sin(ω/2)

and

gT
2 g2 =

N−1

∑
n=0

sin2(nω) = 0.5
N−1

∑
n=0

(1− cos(2nω)) = N/2−0.5
N−1

∑
n=0

cos(2nω)

= N/2−0.5R
N−1

∑
n=0

exp(2 jω) = N/2− cos((N−1)ω)
sin(Nω)

2sin(ω)

where the last two results use the real and imaginary parts of the suggested summation
formula.

b follows fairly straightforwardly as GT x.

(c) With ω = π/5 and N = 1000, show that the solution simplifies to:

â =
1
N

N−1

∑
n=0

xn, b̂ =
2
N

N−1

∑
n=0

sin(ωn)xn

[20%]

Solution:

In this case the columns of G are orthogonal and hence GT G is diagonal, which decouples
the solution into the two simple equations given.

(d) Explain why this simplification occurs. How should the data length be chosen in
general, relative to ω , to ensure that this is the case? [20%]

Solution:

This is because the sine basis function g2 in this case is orthgonal to the dc component
g1. The dc component is obtained in this case as the mean of x without reference to the
sine term and b is the normalised projection of the sin-wave onto the data.

This can be ensured provided the data length is an integer multiple of the period of the
sin-wave, 2π/ω .

END OF PAPER
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