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Question 1

Part (a)
For 0 < i < M

Pr(Xn+1 = i)

=

M∑
j=0

Pr(Xn+1 = i,Xn = j)

=

M∑
j=0

Pr(Xn+1 = i|Xn = j) Pr(Xn = j)

= Pr(Xn+1 = i|Xn = i− 1)Pr(Xn = i− 1) + Pr(Xn+1 = i|Xn = i+ 1)Pr(Xn = i+ 1)

= αPr(Xn = i− 1) + (1− α) Pr(Xn = i+ 1).

For i =M the same procedure gives

Pr(Xn+1 =M)

= Pr(Xn+1 =M |Xn =M − 1)Pr(Xn =M − 1) + Pr(Xn+1 =M |Xn =M) Pr(Xn =M)

= αPr(Xn =M − 1) + αPr(Xn =M).

For i = 0

Pr(Xn+1 = 0)

= (1− α) Pr(Xn = 0) + (1− α) Pr(Xn = 1).

[30%]
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Part (b)
The Markov chain is irreducible since the chain can visit any state from any
starting point.

Let P be the (M+1)×(M+1) transition probability matrix where row i con-
tains the transition probabilities out of state i−1. Let πn = (Pr(Xn = 0), . . . ,Pr(Xn =M)).
Then

πn+1 = πnP.

The stationary probability satisfies

π = πP

for a row vector π with non-negative elements that add to 1.
When α = 0.5, by inspection we see that π = 1/(M+1) (1, . . . , 1) will satisfy

π = πP .
[20%]

Part (c)

log Pr(X1 = x1, . . . XT = xT |X0 = x0)

=

T∑
i=1

log Pr(Xi = xi|Xi−1 = xi−1)

= (s+ r) log(α) + (T − s− r) log(1− α)

Differentiating with respect to α and setting to 0 gives

s+ r

α
− T − s− r

1− α
= 0

and hence
α =

s+ r

T
.

[20%]

Part (d)-i

∞∑
i=1

i Pr(Xn − 1 = i) = Pr(Xn − 1 = −1) +
∞∑

i=−1
i Pr(Xn − 1 = i)

≥ E(Xn − 1)

= E(Xn)− 1.

[10%]
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Part (d)-ii
Equation (1) that was derived still holds for i > 0.

E(Xn+1) =

∞∑
i=0

i Pr(Xn+1 = i)

=

∞∑
i=1

i Pr(Xn+1 = i)

= α

∞∑
i=1

i Pr(Xn = i− 1) + (1− α)
∞∑
i=1

i Pr(Xn = i+ 1).

The first sum
∞∑
i=1

i Pr(Xn = i− 1) =

∞∑
i=1

i Pr(Xn + 1 = i) = E(Xn + 1) = E(Xn) + 1.

The second sum was shown to be:
∞∑
i=1

i Pr(Xn = i+ 1) =

∞∑
i=1

i Pr(Xn − 1 = i)

≥ E(Xn)− 1.

Combining gives

E(Xn+1) ≥ α (E(Xn) + 1) + (1− α) (E(Xn)− 1) = 2α− 1 +E(Xn).

When α > 1 we see that the expected value of the queue length is strictly
increasing in time. Thus the queue must be growing in length.

[20%]
Examiner’s comments: Attempted by 60% of candidates. Parts (a) and (b)

were easy point earners. Part (c) was poorly answered by a significant number
although the question helps in setting up the maximum likelihood problem. Part
(d) was very poorly answered with only a handful of candidates getting (d)-ii
correct even though the previous parts make clear which results to call on. In
part (d)-i, many students failed to realise that the range of Xn − 1 is all the
integers commencing from −1; this was the primary reason many were unable
to show the required result.
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Question 2

Part (a)
Formulate the problem in vector notation:

X =


1 0
1 1
...

...
1 N − 1


[
a
b

]
+W = Gθ +W

Minimise

J(θ) = (X −Gθ)T (X −Gθ) = θTGTGθ − 2θTGTX +XTX

with respect to θ. Differentiate and set to zero,[
∂
∂aJ
∂
∂bJ

]
= 0

2GTGθ − 2GTX = 0

θ̂ =
(
GTG

)−1
GTX.

Compute the expected value to get

E(θ̂) = E
((
GTG

)−1
GTX

)
=
(
GTG

)−1
GT (E (X))

=
(
GTG

)−1
GTGθ

= θ.

Thus the estimate is unbiased. [30%]

Part (b)
Need to compute

E

[(
θ̂ − θ

)(
θ̂ − θ

)T]
= E

[
θ̂θ̂T

]
− θθT .

The first expectation is

E
[
θ̂θ̂T

]
= E

[(
GTG

)−1
GTX

((
GTG

)−1
GTX

)T]
=
(
GTG

)−1
GTE

[
XXT

]
G
((
GTG

)−1)T
= HE

[
XXT

]
HT .
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E
[
XXT

]
= GθθTGT + E

(
WWT

)
+ E

(
GθWT +W (Gθ)T

)
= GθθTGT + E

(
WWT

)
= GθθTGT +R

where the matrix R = E
(
WWT

)
. Then

HE
[
XXT

]
HT = H

[
GθθTGT +R

]
HT

H
[
GθθTGT

]
HT =

(
GTG

)−1
GTG

[
θθT

]
GTG

((
GTG

)−1)T
= θθT .

Thus the variance is HRHT . [20%]

Part (c)

HRHT = cHHT = c
(
GTG

)−1
GTG

((
GTG

)−1)T
= c

(
GTG

)−1
where c = E(W 2

i ) if we assume Wi is white noise, i.e. R = cI with I being the
identity matrix.

The matrix

GTG =

[
N

∑N−1
i=1 i∑N−1

i=1 i
∑N−1
i=1 i2

]

The inverse of this matrix tends to the zero matrix. Use the data book to obtain

GTG =

[
N N(N − 1)/2

N(N − 1)/2 (N − 1)N(2N − 1)/6

]
The determinant is (N −1)N2(2N −1)/6−N2(N −1)2/4 and the highest order
term is N4/3−N4/4. This term causes all terms in (GTG)−1 to tend to zero.

[10%]

Part (d)-i
When Wn = c sin(ωn+ φ),

E(Wn) =
1

2π

∫ π

−π
c sin(ωn+ φ)dφ = 0 (1)

since periodic function is integrated over a complete period.
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E(WnWm) = c2E (sin(ωn+ φ) sin(ωm+ φ))

=
c2

2
E (cos(ω(n−m))− cos(ω(m+ n) + 2φ)

=
c2

2
cos(ω(n−m))

since E (cos(ω(m+ n) + 2φ) = 0 as it is being integrated over 2 periods when it
is expressed as in (1). Thus Wn is wide sense stationary and its autocorrelation
function is

RW (k) = c2 cos(ωk)/2.

[20%]

Part (d)-ii
The PSD of RW (k) = c2 cos(ωk)/2 is

SW (f) =

∞∑
k=−∞

c2

2
cos(ω0k)e

i2πfk

Form the data book this gives a spike when f = ω0/2π.
[10%]

Part (d)-iii
Call the residual data

en = xn − â− b̂n = wn + (a− â) + (bn− b̂n).

We can estimate the autocorrelation function of the residuals and then compute
its PSD. Find the peak in power spectrum. This gives an estimate of ω0. This
should be a reasonable estimator if â and b̂ estimates the trend well. Which it
is as the variance of least squares tends to 0 for large amounts of data.

[10%]
Examiner’s comments: Attempted by 75% of candidates. Part (a) should

have been answered by setting up the optimisation problem in matrix notation.
Candidate who did not do this had difficult algebra to contend with. Part (b)
was mainly answered well. Part (c) was poorly answered and results in the
data book should have been used to find the inverse. Part (d)-(i) and (ii) were
easy point earners. Almost all did not answer part (d)-iii correctly by failing to
subtract the linear trend from the data xn.
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Question 3

Part (a)
The joint pdf can be written as the product of a conditional and marginal pdf
as follows,

p(x, y1, . . . , yn) = p(x)p(y1, . . . , yn|x)
= p(x)p(y1|x) · · · p(yn|x1)

where the second equality follows since given X = x, the observations Y1, . . . , Yn
are independent. Furthermore,

p(yi|x) = (2πσ2
w)
−0.5 exp

(
−0.5(yi − x)2/σ2

w

)
.

[10%]

Part (b)
The conditional density is

p(x|y1) =
p(x, y1)

p(y1)
=
p(x)p(y1|x)

p(y1)
.

We can write the density q(x) of a Gaussian random variable with mean m and
variance s2 as

log q(x) = − 1

2s2
x2 +

m

s2
x+ C

where C denotes the terms not depending on x.

log p(x|y1) = −
1

2σ2
(x2 − 2µx)− 1

2σ2
w

(x2 − 2y1x) + C

= −1

2

(
x2
(

1

σ2
+

1

σ2
w

)
− 2x

(
µ

σ2
+
y1
σ2
w

))
+ C

= −1

2

(
x2
(
σ2
w + σ2

σ2σ2
w

)
− 2x

(
σ2
wµ+ σ2y1
σ2σ2

w

))
+ C

= −1

2

(
σ2
w + σ2

σ2σ2
w

)(
x2 − 2x

(
σ2
wµ+ σ2y1
σ2 + σ2

w

))
+ C

which implies p(x|y1) is Gaussian with mean

µ1 =
σ2
wµ+ σ2y1
σ2 + σ2

w

and variance

σ2
1 =

σ2
wσ

2

σ2 + σ2
w

.

[30%]
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Part (c)
The density p(x|y1, y2) is

p(x|y1, y2) =
p(x)p(y1|x)p(y2|x)

p(y1, y2)

=
p(x)p(y1|x)

p(y1)

p(y2|x)
p(y2|y1)

= p(x|y1)
p(y2|x)
p(y2|y1)

.

Using the result from the previous part, as p(x|y1) is N (µ1, σ
2
1), it follows that

p(x|y1, y2) is N (µ2, σ
2
2) where

µ2 =
σ2
wµ1 + σ2

1y2
σ2
1 + σ2

w

and

σ2
2 =

σ2
wσ

2
1

σ2
1 + σ2

w

.

The same equations apply for other values of k:

σ2
k =

σ2
wσ

2
k−1

σ2
k−1 + σ2

w

and

µk =
σ2
wµk−1 + σ2

k−1yk

σ2
k−1 + σ2

w

.

[20%]

Part (d)
We see that

V =
1

n
(W1 + . . .+Wn) .

Any linear transformation of a vector of independent Gaussian random variables
is still Gaussian. (The fact that V is Gaussian can be verified through its
characteristic function. This is bookwork.) The variance of V is σ2

w/n while its
mean is zero.

Using the solution to the earlier part p(x|z) is N (m, s2) where

m =
µσ2

w/n+ σ2z

σ2 + σ2
w/n

and

s2 =
σ2 σ2

w/n

σ2 + σ2
w/n

.

[20%]
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Part (e)
There is no difference between p(x|y1, . . . , yn) and p(x|z). Let nz = y1+. . .+yn.

log p(x|y1, . . . , yn) = −
1

2σ2
(x2 − 2µx)− 1

2σ2
w

(nx2 − 2nzx) + C

= − 1

2σ2
(x2 − 2µx)− 1

2σ2
w/n

(x2 − 2zx) + C

In an earlier part we have already shown this to correspond to a Gaussian
density with mean m and variance s2. The second scheme though is more
memory efficient since only the average of the observations are stored. This is
important if n is very large.

[20%]
Examiner’s comments: Attempted by 67% of candidates. Parts (a) and (b)

were well answered by most though those that found part (a) difficult were ill
equipped to answer the whole question properly. The proof in part (c) was
circular in some cases though the arguments to be used were trivial. It was
disappointing to see part (d) answered poorly by a significant majority even
though part (b) equipped candidates with the necessary tool. Part (e) was
poorly done by the vast majority and many failed to realise both techniques
yield the same estimate for X.
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Question 4

Part (a)
To find lag 0, square both sides and take the expectation

E(X2
n) = α2E(X2

n−1) +E(W 2
n) + 2αE(Xn−1Wn)

Thus RX(0) = α2RX(0) + σ2. To find RX(k) for k > 0, multiply both sides
with Xn−k and take the expectation

E (XnXn−k) = αE (Xn−1Xn−k) +E (WnXn−k)

RX(k) = αRX(k − 1).

So RX(k) = αkRX(0) where RX(0) = σ2/(1− α2). Also RX(−k) = RX(k).
[20%]

Part (b)
The autocorrelation of Un is

E (UnUn+k) =E ((Xn + Vn)(Xn+k + Vn+k))

= E (XnXn+k) +E (VnVn+k) +E (XnVn+k) +E (Xn+kVn)

= RX(k) +RV (k) + 0 + 0.

SinceXn is a weighted sum of all previous values ofWn,Wn−1, . . . andE (WmVn+k) =
0, it follows that E (XnVn+k) = 0. Similarly for the term E (Xn+kVn) = 0.

Finally, RV (0) = σ2
v and RV (k) = 0 for other values of k thus

RU (k) = RX(k) + σ2
vI[k=0].

[15%]

Part (c)
Differentiate the cost function wrt to h1 to get

E
(
−2
(
Xn − X̂n

)
Un−1

)
= E (−2 (Xn − h1Un−1)Un−1)

Set the derivative to zero to get

h1 =
E (XnUn−1)

E
(
U2
n−1
)

=
E (XnXn−1) +E (XnVn−1)

E
(
X2
n−1
)
+E

(
V 2
n−1
)
+ 0

=
E (XnXn−1)

E
(
X2
n−1
)
+E

(
V 2
n−1
)

=
αRX(0)

RX(0) + σ2
v

and the solution is not α because σ2
v > 0. [15%]
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Part (d)
We need to predict Xn using noisy measurements of its p previous values. Dif-
ferentiate the cost function wrt to each hi and set to zero. A vector formulation
is more convenient.

Let

X̂n = hT [Un−1, . . . , Un−p]
T
= hTUn−1 = hTXn−1 + hTV n−1

where

Xn−1 = [Xn−1, . . . , Xn−p]
T
, V n−1 = [Vn−1, . . . , Vn−p]

T

The cost function is
E
(
(Xn − hTUn−1)2

)
.

Differentiating wrt to the vector h and set to 0

−2E
(
(Xn − hTUn−1)Un−1

)
= 0

or
E
(
XnUn−1

)
= E

(
Un−1U

T

n−1

)
h

or

E
(
Un−1U

T

n−1

)−1
E
(
XnUn−1

)
= h.

[30%]

Part (e)
When σ2

v = 0,

E
(
Un−1U

T

n−1

)
= E

(
Xn−1X

T
n−1
)

= RX(0)


1 α · · · αp−1

α 1
...

. . .
αp−1 1



E
(
XnUn−1

)
= RX(0)


α
...

αp


Clearly if h = [α, 0, . . . , 0]T it picks the first column of E

(
Un−1U

T

n−1

)
which is

equal to E
(
XnUn−1

)
. Thus in the absence of noise in the observation p = 1 is

sufficient.
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[20%]
Examiner’s comments: Attempted by 97% of candidates and with the ex-

ception of part (e) done well by the majority. The optimal value for p in part
(e) should have been found by using the solution for part (d) when the noise
has zero variance.

S.S.Singh
May 2019
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