
3F6 Software Engineering and Design: 2015 Solutions

Dr. Richard E. Turner and Dr. Elena Punskaya

14 May 2015

1 (a) “Describe the purpose of Interfaces in Object Oriented Design. Explain why implementing multiple
Interfaces by a single class might be useful.[15%]”

Bookwork

(b) (i) “Identify the principal Classes and their Relationships for the Object Oriented system that
implements the Stock View functionality. Illustrate the design with the help of a Class Diagram.
Consider the use of Interfaces to encapsulate different types of functionality provided by the Class
Market. [40%]”

One of the possible solutions is presented in Fig. 1. Any reasonable naming conventions can be
used.

(ii) “Draw a Sequence Diagram for the scenario in which the Stock View is updated in response to
a transaction executed in the market. [30%]”

One of the possible solutions is presented in Fig. 2. Any reasonable naming conventions can be
used.

(iii) “Discuss how Agile Software Development techniques can be used in the project described above.
[15%]”
Most of the Agile techniques can be used, in particular, the following might be listed:

• using ”stories” to capture the requirements and implement them incrementally

• test design and requirements via incremental deployments

• using source code repository and continuous integration (automated builds)

• test in the clone of the production environment

• automated testing, unit test, usability studies

It should also be noted that continuous deployment may not be appropriate given that any issue
in the production system will have a high cost.

1

Figure 1: Class Diagram

Market

IMarketActivity
<<interface>>

add(IMarketActivityListener)
remove(IMarketActivityListener)

IMarketActivityListener
<<interface>>

updated()

<<realize>>

IMarketData
<<interface>>

getPrice(Symbol)

<<realize>>

StockView StockViewItem

display()

Stock

getSymbol()
getPrice()
getDelta()
-calculateDelta()

<<realize>>

1
monitors

1..*
displays

1represents

1
getsDataFrom

2

Figure 2: Sequence Diagram

/aMarket:Market /aStockView:StockView /aStockViewItem:StockViewItem

IMarketListener.updated()
display()

/aStock:Stock

getSymbol()

return mySymbol

getPrice()

return myPrice

IMarketData.getPrice(mySymbol)

return currentPrice

calculateDelta()

getDelta()

3

a)Bookwork

Question 2

b)

i)One of the possible solutions is presented below

ChooseDrink

Black tea

Coffee

Green tea

100

95

80

Select time

14 45

Ready

Background

Start

Current time pre-set,
buttons to increase or
decrease as on home
appliances

Drinks sorted inmost
recent order,
temperature
specified next to
each drink,
possibility to scroll
down for more

Buttons OK and Cancel

Consistent screens, self-explanatory title

Buttons to choose each
pre-specified drinks

Only one button can be
selected, pressing it
leads to the next screen

Exit

OK - instructions are set,
the app goes into
background.

Cancel - exit the app

Swipe gesture allows to go
back to a previous page in
the app so no special
button due to a small
screen constraints

Exit
Notification when
ready, button to
dismiss
notification

Choose Drink

Black tea

Coffee

Green tea

100

95

80

Select time

14 45

Ready

Number of cups

Not enough water

Apologies, not
enough water for
3 cups. Proceed
anyway?

Invite?

Mum

Yes

No

Dad

Enough

water?

Apologies

Start

Empty kettle

Empty kettle?

If yes display as soon
as known

3

Notification when
ready, button to
dismiss
notification

Number used last time
pre-set, buttons to
increase or decrease as
on home appliances

All screens

OK button - proceed unless
done or notification
Cancel - exit the app
Swipe gesture allows to go
back to a previous page in the
app so no special button due to
a small screen constraints

List of contacts
displayed, none
or several can
be selected
(selection
highlighted)

Background
Exit

b)

 ii-iii)

Put the kettle on

Ready

Apologies

Start

Empty kettle

Empty kettle?

If yes display as soon
as known

Notification when
ready, button to
dismiss
notification

Number used last time
pre-set, buttons to
increase or decrease as
on home appliances

Background

Exit

b)

 iv)

Coffee
Now
3 cups
Mum&Dad

Not enough water

Apologies, not
enough water for
3 cups. Proceed
anyway?

Not enough water?

If yes check if
proceed

Invite?

Number of cups

Select time

Choose Drink Choose drink, Select time,
Number of cups, Invite?
Screens

OK button - confirm the choice
and take the user back to Put
the kettle on screen

Cancel - exit the app

b)

 iv)

All screens

OK button - proceed unless
done or notification
Cancel - exit the app

Swipe gesture allows to go
back to a previous page in the
app so no special button due to
a small screen constraints

3 (a) “Evaluate the database design and suggest how to improve it. Draw an Entity-Relationship Diagram
to illustrate your answer. [15%]”

CitizenID

CITIZEN

CitizenName

has PHONE

PhoneNum CitizenID

1 M

1

receives

1 makes M CALL

M

TSTelCal TelRec* * *

(b) “Show the updated design of the tables including any new Entities and Attributes added in the
answer to part (a). Identify the Primary and Foreign keys used. [15%]”

The new tables are:

CITIZEN [CitizenID,Name]

primary key: CitizenID

PHONE [CitizenID,PhoneNum]

primary key: PhoneNum foreign key: CitizenID

CALL [TelCal,TelRec,TS]

primary key: (TelCal,TS) or (TelRec,TS) foreign key: TelCal and TelRec (both reference PhoneNum)

(c) “Design a query to return all of the telephone numbers that Alice has made calls from. Express your
answer using relational algebra or SQL code and explain your solution. [10%]”

SELECT PHONE.PhoneNum FROM CITIZEN JOIN PHONE ON CITIZEN.CitizenID = PHONE.CitizenID
WHERE CITIZEN.Name = ‘Alice’;

(d) “Design a query to return the names of the citizens who have called Alice. Express your answer using
relational algebra or SQL code and explain your solution. [25%]”

One method uses the solution to part (c)

SELECT DISTINCT CITIZEN.Name FROM CITIZEN JOIN PHONE ON CITIZEN.CitizenID =
PHONE.CitizenID JOIN CALL ON PHONE.PhoneNum = CALL.TelCal WHERE CALL.TelRec IN
(SELECT PHONE.PhoneNum FROM CITIZEN JOIN PHONE ON CITIZEN.CitizenID = PHONE.CitizenID
WHERE CITIZEN.Name = ‘Alice’);

Alternatively, using the rename operator:

SELECT DISTINCT CITIZEN.Name FROM PHONE JOIN CALL ON PHONE.PhoneNum =
CALL.TelCal JOIN PHONE AS X ON X.PhoneNum = CALL.TelRec JOIN CITIZEN ON CITI-
ZEN.CitizenID = PHONE.CitizenID JOIN CITIZEN AS Y ON Y.CitizenID = X.CitizenID WHERE
Y.Name = ‘Alice’;

(e) “The government wants to know the names of the citizens who were called by citizens who were
themselves called by Alice. Design a suitable query and express your answer using relational algebra
or SQL code. Explain your solution. [25%]”

7

SELECT DISTINCT Y.Name FROM PHONE JOIN CALL AS C1 ON PHONE.PhoneNum =
C1.TelCal JOIN CALL AS C2 ON C1.TelRec = C2.TelCal JOIN PHONE AS X ON X.PhoneNum
= C2.TelRec JOIN CITIZEN ON CITIZEN.CitizenID = PHONE.CitizenID JOIN CITIZEN AS Y
ON Y.CitizenID = X.CitizenID WHERE CITIZEN.Name = ’Alice’;

(f) “The government wants to carry out many queries similar to the one in part (e). Describe features
that could be added to the database to accelerate such queries and detail potential disadvantages
they may have. [10%]”

Secondary indices could be added to the database. Three secondary indices could be added to TelRec
and TelCal in CALL, and also PhoneNum in PHONE. It might also be useful to add a secondary
index to Name in CITIZEN. Adding these indices will accelerate queries, but they will slow down
additions/modifications/deletions. This might be especially problematic for the CALL relation as
new calls will continually be added to it.

8

4 (a) “Explain the importance of the serialisability of a schedule in concurrency control. Define the seri-
alisation graph and explain how it is used to determine whether a schedule is serialisable. [20%]”

Bookwork

(b) i. “Draw the serialisation graph for the schedule and determine whether it is serialisable. For this
part of the question assume that no form of concurrency control is used. [15%]”

T1

T4 T3

T2
D

B

CD

A,D

A,B,D A
D

There are directed loops in the serialisation graph, and so the schedule is not serialisable.

ii. “Draw a resource allocation graph for this sequence of transactions immediately after action
number 15. [30%]”

A.R

B.R

C.R

D.R

C.W

D.W

T1

T2

T3

T4

1

3

10

4

2

14

5

6

15

B.W

13

8

iii. “Draw the corresponding wait-for-graph. State which transactions will complete and the order
in which they do so. Comment on the efficacy of the concurrency control protocol for this
schedule.[20%]”

T1

T4 T3

T2

T2 commits, followed by T3 (this requires inspection of the intended actions for T3 after time-
step 10 to ensure deadlock does not occur), then T4 commits and finally T1. The locking protocol
has turned a non-serialisable intended schedule into a serialisable schedule.

9

(c) “What are the limitations of lock-based concurrency control methods? Outline an alternative concur-
rency control protocol and explain in which situations it is likely to outperform lock-based methods.
[15%]”

Bookwork

Principal Assessor’s comments:

Q1 Universal modelling language, design patterns, and interfaces. The least popular question in the exam,
but nevertheless well answered by the majority of candidates. A number of candidates did not identify the
observer design pattern as the most logical solution to part (b). Good solutions used a design that could
enable separate software teams to develop the component parts in parallel without knowing the specifics
of the other teams implementation.

Q2 User interfaces. A popular question that was well answered by most. Many candidates were able to identify
and devise a sensible design for the smart watch screens, but some failed to discuss the relationship between
the screens and program flow.

Q3 Database design and queries. This question was well answered in the main. Some candidates struggled
to devise sensible entity relationship diagrams and this led to overly complex databases for which it was
cumbersome to design queries. Many candidates failed to identify secondary indices as the most sensible
solution to part f.

Q4 Concurrency control. This question polarised candidates with many doing very well (there were two
essentially perfect solutions) and many doing poorly. The candidates who struggled a) did not know
what a serialisation graph was, and b) failed to identify when transactions would wait (and therefore stop
acquiring locks) when constructing the resource allocation diagram.

10

