
3F7 Information Theory and Coding

Engineering Tripos 2017 – Solutions

Question 1

(a) i) P (X = 1) = 5/16, P (X = 2) = 3/8, P (X = 2) = 5/16. This can be used to compute:

H(X) =
2 . 5

16
log2

16

5
+

3

8
log2

8

3
= 1.5794 bits.

The joint entropy is

H(X,Y ) =
∑
x,y

PXY (x, y) log2
1

PXY (x, y)
=

4

16
log2(16) +

3

4
log2(4) = 1 + 1.5 = 2.5 bits.

The conditional entropy is H(Y |X) = H(X,Y )−H(X) = 0.9206 bit. [20%]

ii) The pmf of Z is
z 1 2 3 4 6 9

P (z) 1/4 1/8 0 1/4 1/8 1/4,

From this we can compute: [15%]

H(Z) =
∑
z

P (z) log2 1/P (z) =
2

8
log2(8) +

3

4
log2(4) = 0.75 + 1.5 = 2.25 bits.

iii) We have

H(Z|X) = P (X = 1)H(Z|X = 1) + P (X = 2)H(Z|X = 2) + P (X = 3)H(Z|X = 3)

= P (X = 1)H(Y |X = 1) + P (X = 2)H(Y |X = 2) + P (X = 3)H(Y |X = 3)

= H(Y |X) = 0.9206bit, from part a.(i)

Next,

H(X,Z) = H(X) +H(Z|X) = H(Z) +H(X|Z)

⇒ H(X|Z) = H(X) +H(Z|X)−H(Z) = 1.5794 + 0.9206− 2.25 = 0.25 bit

[20%]

(b) i) The exponential density, f(x) = 1
µe
− x
µ , x ≥ 0, has unit integral and mean µ:

therefore h(f) = −
∫ ∞
0

f(x) log2 f(x)dx =

∫ ∞
0

(− log2
1

µ
+
x

µ
log2 e)

1

µ
e
− x
µ dx

= − log2
1

µ
+ log2 e .

1

µ

∫ ∞
0

x

µ
e
− x
µ dx = − log2

1

µ
+ (log2 e) .

µ

µ

= log2 µ+ log2 e = log2(µe) bits,

or =
1

ln 2
(lnµ+ 1) bits.

[20%]
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ii) Let the density of Y be g, and let f be the exponential density given in part (b).(i). Consider
the relative entropy between g and f . We have

D(g||f) =

∫ ∞
−∞

g(x) log2
g(x)

f(x)
dx

=

∫ ∞
0

g(x) log2 g(x) dx+

∫ ∞
0

g(x)

[
log2

1
1
µe
− x
µ

]
dx

(a)
= −h(Y ) +

∫ ∞
0

g(x)

[
x

µ
log2 e+ log2 µ

]
dx

(b)
= −h(Y ) +

µ

µ
. log2 e+ 1 . log2 µ

= log2(µe)− h(Y ).

(1)

Step (a) is obtained from the definition of differential entropy h(Y ); step (b) holds because the
mean of Y (with density g) is µ, and the fact that g being a density integrates to 1.

As the relative entropy is non-negative, we have from (1)

D(g||f) = log2(µe)− h(Y ) ≥ 0 ⇒ h(Y ) ≤ log2(µe) = h(X),

where the last equality was shown in part (b)(i) above. [25%]
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Question 2

(a) i) An optimal prefix-free code can be found using the Huffman procedure as shown below.

(Other codewords are also possible, by interchanging 0 and 1.) The expected code length is [15%]

L = (0.4) . 1 + (0.35) . 2 + (0.25) . 2 = 1.6 bits

ii) The minimum expected length in bits/symbol of any uniquely decodable code is the entropy
H(X), which equals [5%]

−0.4 log2(0.4)− 0.35 log2(0.35)− 0.25 log2(0.25) = 1.5589 bits/symbol

iii) A practical technique for prefix-free coding of long sequences is arithmetic coding, which
proceeds as follows. Start by dividing the interval [0, 1) in the proportion of the symbol proba-
bilities, e.g, [0, .4), [0.4, .75), [.75, 1). Choose the sub-interval corresponding to the first symbol
X1, and divide the chosen subinterval into three further sub-intervals in the proportion of the
symbol probabilities. Then choose the second-level subinterval corresponding to X2 and so on.
Finally, after finding the subinterval corresponding to X1, . . . , Xn, find a dyadic interval of the

form
[
j
2`
, j+1

2`

)
that lies inside this sub-interval. The binary representation of j is the binary

codeword.

The length of the binary codeword for X1, . . . , Xn is at most d log2
1

P (X1, . . . , Xn)
e+ 1

which gives an expected code length [20%]

L =
1

n

∑
xn

P (xn)

(
d log2

1

P (X1, . . . , Xn)
e+ 1

)
< H(X) +

2

n
bits/symbol.

(b) i) Note that Z can take values in {2, . . . , 8} with

PZ(2) =
1

16
, PZ(3) =

2

16
, PZ(4) =

3

16
, PZ(5) =

4

16
, PZ(6) =

3

16
, PZ(7) =

2

16
, PZ(8) =

1

16
.

The expected number of questions with the given strategy is [25%]

L1 = 1PZ(2) + 2PZ(3) + 3PZ(4) + 4PZ(5) + 5PZ(6) + 6PZ(7) + 6PZ(8)

=
1

16
[1 + 4 + 9 + 16 + 15 + 12 + 6] =

63

16
= 3.9375
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ii) An optimal strategy can be found using the Huffman procedure, as shown below.

(Note that there are many valid answers here, but all correct answers will give the same expected
number of questions in (b)(iii) below.)

From the root of the tree, the questions will be of the form:
– Is the value either 5 or 6: If ’yes’, follow the lower ’0’ branch in the tree; if ’no’, follow the
upper ’1’ branch.
– Repeat the above procedure with an appropriate new question until a leaf node is reached. [20%]

iii) The expected code length (and hence number of questions) for the optimal strategy derived
above is

Lopt = 2[PZ(5) + PZ(6)] + 3[PZ(4) + PZ(7) + PZ(3)] + 4[PZ(8) + PZ(2)]

=
1

16
[2 . 7 + 3 . 7 + 4 . 2] =

43

16
= 2.6875

With the above strategy, the sequence of questions asked if the value is 3 is:

– Is the value either 5 or 6 (Ans: No)

– Is the value either 4 or 7 (Ans: No)

– Is the value 3 (Ans: Yes) [15%]
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Question 3

(a) i) P (Y = 0) = 3
4p+ 1

2(1− p) = 1
2 + p

4 ;
P (Y = 1) = 1

2 −
p
4 . [10%]

ii) Let the input distribution be P (X = 0) = p, P (X = 1) = (1− p), as above. Then with P (Y )
as computed above, have

I(X;Y ) = H(Y )−H(Y |X) = H2

(
1

2
+
p

4

)
− p H(Y |X = 0)− (1− p) H(Y |X = 1)

= H2

(
1

2
+
p

4

)
− p ·H2(0.75)− (1− p) ·H2(0.5)

= H2

(
1

2
+
p

4

)
− 1 + p · (1−H2(0.75))

(2)

To find the capacity, we need to maximize I(X;Y ) over p. Using the hint to differentiate we find

d

dp
I(X;Y ) =

1

4
log2

(
1
2 −

p
4

1
2 + p

4

)
+ 1−H2(0.75) (3)

Setting (3) to 0 and solving for p yields the optimum value p∗, where:

2− p∗

2 + p∗
= 24(H2(0.75)−1) = 23 log2(4/3)+log2(4)−4 = (4/3)3 · 4/16 =

16

27

Hence p∗ =
2(1− 16/27)

1 + 16/27
=

2(27− 16)

(27 + 16)
=

22

43
= 0.5116

Substituting this value into (2), we get the capacity:

C = I(X;Y )max = 0.9523− 1 + 0.5116(1− 0.8113) = 0.0488 bits

and the maximising input distribution is P (X) = {p∗, 1− p∗} = {0.5116, 0.4884}. [40%]

iii) Fix a rate R just less than C and a sufficiently large block length n. Construct a codebook
of 2nR length-n codewords with each symbol of each codeword generated randomly and i.i.d
according to PX(0) = 0.5116, PX(1) = 0.4884. A joint typicality decoder can be used to recover
the transmitted codeword with arbitrarily low probability of error by taking sufficiently large n.

[20%]

(b) Step (a) is obtained by using the chain rule for conditional entropy:

I(Xn;Y n)
(a)
= H(Y n)−H(Y n|Xn) = H(Y n)−

n∑
i=1

H(Yi | Yi−1, . . . , Y1, Xn)

Step (b) holds because the channel is memoryless, so given all the inputs (X1, . . . , Xn) and the
past outputs (Y1, . . . , Yi−1), the current output Yi depends only on the current input Xi, so that
for each i:

H(Yi | Yi−1, . . . , Y1, Xn) = H(Yi | Xi).

Step (c) is obtained first by using the chain rule for entropy, and then the fact that removing
the conditioning can only increase the entropy (or equivalently, adding conditioning can only
decrease the entropy):

H(Y n) = H(Y1) +H(Y2|Y1) + . . .+H(Yn|Yn−1, . . . , Y1)
≤ H(Y1) +H(Y2) + . . .+H(Yn)

Step (d) is obtained by observing that, for each i, H(Yi)−H(Yi|Xi) = I(Xi;Yi) and I(Xi;Yi) ≤ C,
since C = max(I(X;Y )) over all input distributions. [30%]
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Question 4

(a) i) Dimension k = 3, block length n = 7, rate R = 3/7. [10%]

ii) Using the data sheet to get the parity check matrix for a given generator matrix, we get

H =


0 1 1 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1


[10%]

iii) We solve for c = [c1, c2, c3, 1, c5, 0, 0] using cHT = 0:


0 1 1 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1





c1
c2
c3
1
c5
0
0


=


0
0
0
0



This gives the equations: [25%]

c2 + c3 + 1 = 0 c1 + c3 + c5 = 0 c1 + c2 = 0 c1 + c2 + c3 = 0

Solving these gives c1 = 1, c2 = 1, c3 = 0, c5 = 1. Hence c = [1, 1, 0, 1, 1, 0, 0].

As this is a systematic code, the information bits are [x1 = c1, x2 = c2, x3 = c3] = [1, 1, 0].

(One can also solve the problem starting from the equations obtained from [x1, x2, x3]G = c,
using just the non-erased bits for c and the corresponding columns from G.)

(b) i) From the Data Sheet, the design rate of the code is given by:

R = 1−
∫ 1
0 ρ(x)dx∫ 1
0 λ(x)dx

= 1−
[
x6/6

]1
0

[0.1x3 + 0.08x5 + 0.05x6]10
=

19

69
= 0.2754

[10%]

ii) The given λ(x) tells us that 30% of edges are connected to degree-3 variable nodes, 40%
of edges are connected to degree-5 variable nodes, and 30% of edges are connected to degree-6
variable nodes. [10%]

ρ(x) tells us that all the edges are connected to degree-6 check nodes, i.e. all check nodes have
degree 6.

iii) The log-likelihood ratio is [20%]

L(y) = ln

(
fY |X(y | 0)

fY |X(y | 1)

)
= ln

(
exp(−|y|)

exp(−|y − 1|)

)
= |y − 1| − |y|

=


−(y − 1)− (−y) = 1 for y < 0,

−(y − 1)− y = 1− 2y for 0 ≤ y < 1,

(y − 1)− y = −1 for y ≥ 1,

as plotted below:
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y

L(y)

1

1

−1

iv) From part (iii), the log-likelihood ratio corresponding to the channel output yj = 0.1 is
L(yj) = 1 − 2(0.1) = 0.8. According to the belief propagation update equation for the variable
node in the Data Sheet, the outgoing message sent by the variable node along the third edge
should therefore be [15%]

Lji = L(yj) +
∑
i′\i

Li′j = 0.8 + (−0.23) + 0.53 = +1.1

N G Kingsbury
24 May 2017.
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