
3F7 Information Theory and Coding

Engineering Tripos 2018/19 – Solutions

Question 1

(a) i) The set of possible values for Y is {0, 1, 2}. From the law of total probability, [20%]

we have for k = 0, 1, 2:

P (Y = k) =

6∑
i=1

P (X = i)P (Y = k | X = i) =

6∑
i=1

1

6
P (Y = k | X = i), (1)

where the second equality holds because all six outcomes of the die are equally likely. For
X ∈ {1, 2, 3, 4}

P (Y = 0 | X = i) =
1

2
, P (Y = 1 | X = i) =

1

2
, P (Y = 2 | X = i) = 0, for i = 1, 2, 3, 4.

For X ∈ {5, 6},

P (Y = 0 | X = i) =
1

4
, P (Y = 1 | X = i) =

1

2
, P (Y = 2 | X = i) =

1

4
, for i = 5, 6.

Substituting these conditional probabilities in (1), we obtain

P (Y = 0) =
5

12
, P (Y = 1) =

1

2
, P (Y = 2) =

1

12
.

ii) The mutual information is [15%]

I(X;Y ) = H(Y )−H(Y | X) = H

({
5

12
,
1

2
,

1

12

})
−

6∑
i=1

1

6
H(Y | X = i)

= H

({
5

12
,
1

2
,

1

12

})
− 4

6
· 1− 2

6
H

({
1

4
,
1

2
,
1

4

})
= 0.158 bits

(b) Let g(x) be the uniform density on [a, b]. That is g(x) = 1
(b−a) for a ≤ x ≤ b, and zero otherwise.

For any density f that is zero outside [a, b], since the relative entropy D(f‖g) is non-negative,
we have

0 ≤ D(f‖g) =

∫ b

a
f(x) log2

f(x)

1/(b− a)
dx =

∫ b

a
f(x) log2(b− a)dx+

∫ b

a
f(x) log2 f(x)dx (2)

= log2(b− a)− h(X).

In (2), equality holds if and only if f = g, i.e., the uniform density. Therefore h(X) ≤ log2(b−a),
with equality if and only if X is uniformly distributed in [a, b]. [20%]

(c) i) Let n1a denote the number of occurrences of (X = 1, Y = a) in (xn, yn), and n0b, n1b, n0c
similarly defined. From the given pmf, H(X,Y ) = 2 and [15%]

PXY (xn, yn) =

(
1

4

)n1a+n0b+n1b+n0c

⇒ − 1

n
logPXY (xn, yn) = 2 · n1a + n0b + n1b + n0c

n
.
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Therefore,

AXYn =

{
(xn, yn) :

n1a + n0b + n1b + n0c
n

= 1

}
.

ii) The marginal pmfs are PX(0) = PX(1) = 1
2 , and PY (a) = 1

4 , PY (b) = 1
2 , PY (c) = 1

4 . [15%]

Therefore

H(X) = 1, H(Y ) = H

({
1

4
,
1

2
,
1

4

})
=

3

2
.

From the marginals, we have

PX(xn) =

(
1

2

)n1+n0

, PY (yn) =

(
1

2

)na
(

1

4

)nb
(

1

2

)nc

. (3)

Thus

AXn =

{
xn :

n0 + n1
n

= 1

}
, AYn =

{
yn :

2na + nb + 2nc
n

=
3

2

}
.

Since we also have (na + nb + nc) = n, the above implies any yn ∈ AYn will satisfy nb
n = 1

2 . (This
last implication was not required to get full marks for this part.)

iii) Consider the sequence pair:

xn = 0 0 0 0 1 1 1 1

yn = b b c c a a a a

Here n = 8, and n1a+n0b+n1b+n0c = n = 8. Therefore (xn, yn) ∈ AXYn . However, nb
n = 2

8 6=
1
2 .

Therefore (xn, yn) /∈ AYn . [15%]

(Any other example with nb
n 6=

1
2 or that violates 2na+nb+2nc

n = 3
2 would also work.)

2



Question 2

(a) The code lengths assigned to the five source symbols by a Shannon-Fano code are `i = dlog 1
pi
e,

i = 1, . . . , 5. In decreasing order of symbol probabilities, these are:

`1 = 1, `2 = 2, `3 = 3, `4 = 4, `5 = 4. (4)

The expected code length of the Shannon-Fano code is therefore [20%]

L =
1

2
1 +

1

4
2 +

1

8
3 +

1

16
4 +

1

16
4 =

15

8
, (5)

which is exactly equal to the entropy of the source.

Since the Huffman code always achieves the optimal code length for a given set of probabilities,
its expected code length can be no larger than than that of Shannon-Fano. Hence a Huffman
code must achieve the entropy of this source. (Note that Shannon-Fano achieves the entropy
whenever all the probabilities are integer powers of 1

2 .)

(b) i) The code lengths and expected code length are given by (4) and (5), respectively. The redun-
dancy R(γ) is given by [10%]

R(γ) =
1

2
· 1 +

1

4
· 2 +

1

8
· 3 +

1

16
· 4 +

1

16
· 4−H(S′)

=
1

2
+ (16−1 − γ) log(16−1 − γ) + (16−1 + γ) log(16−1 + γ) (6)

ii) R(γ) is the relative entropy between the two source distributions in (parts (a) and (b)). As the
relative entropy is a measure of distance between the two distributions, we expect the redundancy
to be maximum for γ ∈ (0, 1

32 ] when γ = 1/32. The two distributions are “furthest apart” from
one another for this value of γ. [10%]

(c) i) For the Kraft inequality to be satisfied, we require [15%]

5∑
i=1

2−`i ≤ 1 ⇒ 1

22
+

1

22
+

1

23
+

1

2`4
+

1

24
≤ 1 ⇒ 1

2`4
≤ 5

16
⇒ `4 ≥ 1.678

Since the code length `4 has to be an integer, the minimum possible value is `∗4 = 2. The
corresponding expected code length is

L =
1

4
2 +

1

4
2 +

5

24
3 +

1

6
2 +

1

8
4 = 2.458 bits.

ii) The set B does not contain an optimal symbol code for X because an optimal code in B (with
the expected code length computed in (i) above) assigns a longer codeword to a3 than a4, though
a3 has the higher symbol probability. The expe in B can be improved by swapping the codewords
for a3 and a4. [10%]

iii) Arithmetic coding would be the better choice. Since the probabilities are not dyadic (integer
powers of 1/2), to achieve rates close to the entropy using Huffman coding, one needs to code
over long blocks of symbols. Constructing a Huffman code over blocks (super-symbols) of length
k will give an expected code length within 1/k of the entropy, but the complexity increases
exponentially with k. The complexity of arithmetic coding over a string of k source symbols
increases only linearly with k and the expected code length is within 2

k . [10%]
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(d) We have

H(X)−H(X ′) = pi log
1

pi
+ pj log

1

pj
− (pi − ε) log

1

pi − ε
− (pj + ε) log

1

pj + ε

= pi log
(pi − ε)
pi

+ pj log
(pj + ε)

pj
+ ε log

pj + ε

pi − ε
. (7)

We now use the inequality lnx ≤ (x− 1), or equivalently, log x ≤ (x− 1)/ ln 2. Using this in (7),
we obtain [25%]

H(X)−H(X ′) ≤
[
pi (−ε/pi) + pj(ε/pj) + ε

(
pj + ε

pi − ε
− 1

)]
1

ln 2

=
ε

ln 2

(
pj + ε

pi − ε
− 1

)
< 0 since we are given (pj + ε) < (pi − ε).

Hence H(X ′) > H(X), as required.

(Note: One could also prove the result in other ways. E.g., by differentiating (7) with respect

to ε, and showing that the derivative is negative. One could also recognise that pi log (pi−ε)
pi

+

pj log
(pj+ε)
pj

= −D(PX‖PX′) ≤ 0, where PX , PX′ denote the two pmfs.)
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Question 3

(a) i) Consider the mutual information I(X;Y g(Y )), and expand in two different ways using the
chain rule. [15%]

I(X;Y g(Y )) = I(X;Y ) + I(X; g(Y )|Y ) = I(X; g(Y )) + I(X;Y |g(Y )) (8)

The term I(X; g(Y )|Y ) = H(g(Y )|Y )−H(g(Y )|X,Y ) = 0, because given Y , there is no uncer-
tainty in g(Y ). Using this in (8) gives

I(X;Y ) = I(X; g(Y )) + I(X;Y |g(Y )).

Since I(X;Y |g(Y )) ≥ 0, this implies I(X;Y ) ≥ I(X; g(Y )).

ii) We have [15%]

0 ≤ D(P‖Q) =
∑
x

P (x) log2
P (x)

Q(x)

=
1

ln 2

∑
x

P (x) ln
P (x)

Q(x)

(a)

≤ 1

ln 2

∑
x

P (x)

[
P (x)

Q(x)
− 1

]

=
1

ln 2

{[∑
x

P (x)2

Q(x)

]
− 1

}
⇒

∑
x

P (x)2

Q(x)
≥ 1, as required.

In the above (a) is obtained using lnx ≤ (x− 1).

(b) i) We first show that I(X;Z|Y ) = 0, and hence [10%]

I(X;Y, Z) = I(X;Y ) + I(X;Z|Y ) = I(X;Y ). (9)

We have
I(X;Z|Y ) = H(Z|Y )−H(Z|X,Y ) = 0,

since Z is uniquely determined from Y , and hence H(Z|Y ) = H(Z|X,Y ) = 0.

ii) We compute I(X;Y, Z) as follows:

I(X;Y,Z) = H(Y,Z)−H(Y, Z|X) = H(Z) +H(Y |Z)−H(Z|X)−H(Y |X,Z). (10)

We compute each of the terms as follows: [15%]

H(Z) = H2(α) (11)

H(Y |Z) = αH(Y |Z = 1) + (1− α)H(Y |Z = 2) = αH(Y1) + (1− α)H(Y2) (12)

H(Z|X) = 0 since Z is uniquely determined by X (13)

H(Y |X,Z) = αH(Y |X,Z = 1) + (1− α)H(Y |X,Z = 2) = αH(Y1|X1) + (1− α)H(Y2|X2).
(14)

Substituting (11) – (14) in (9), we obtain

I(X;Y ) = I(X;Y Z) = H2(α) + αH(Y1) + (1− α)H(Y2)− αH(Y1|X1)− (1− α)H(Y2|X2)

= αI(X1;Y1) + (1− α)I(X2;Y2) + H2(α). (15)

Note: One could also compute I(X;Y,Z) via I(X;Y | Z) + I(X;Z). Then I(X;Z) = H(Z) =
Hz(α), and I(X;Y | Z) = αI(X1;Y1) + (1− α)I(X2;Y2).
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(c) Note that I(X1;Y1) ≤ C1 and I(X2;Y2) ≤ C2, with equality if we choose the capacity achieving
input distribution for each of the individual channels. When choosing the channel 1 with prob.
α and channel 2 with probability (1 − α), we can maximise mutual information for the chosen
channel by using its capacity achieving input distribution. We then optimize over α to find the
capacity of the union channel:

C = max
PX

I(X;Y ) = max
α∈[0,1]

αC1 + (1− α)C2 + H2(α), (16)

We differentiate f(α) = αC1 + (1− α)C2 + H2(α) to find the maximum: [25%]

df(α)

dα
= C1 − C2 + log2

(1− α)

α
, (17)

where we have used the given hint dH2(α)
dα = log2

(1−α)
α . Equating (17) to 0, we find that the

maximising value of α is

α∗ =
2C1

2C1 + 2C2
, 1− α∗ =

2C2

2C1 + 2C2
. (18)

Using this value of α∗ in (16), we obtain

C =
2C2C1

2C1 + 2C2
+

2C2C2
2C1 + 2C2

+
2C1

2C1 + 2C2
log

2C1 + 2C2

2C1
+

2C2

2C1 + 2C2
log

2C1 + 2C2

2C2

= log(2C1 + 2C2).

Hence 2C = 2C1 + 2C2 .

iii) This is a union channel with channel one being a binary symmetric channel with crossover
probability 0.1, and channel 2 being the trivial channel whose only input and output is the
symbol 2. We therefore have [20%]

C1 = 1−H2(0.9) = 0.531, C2 = 0,

from which the capacity is C = log(2C1 + 2C2) = 1.29. The capacity achieving input distribution
for channel 1 is P (0) = P (1) = 1

2 . From (18), the optimal value α∗ = 0.591, and hence the
maximising input distribution is

P (X = 0) =
0.591

2
= 0.2955, P (X = 1) = 0.2955, P (X = 2) = 0.409.
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Question 4

(a) Block length n = 6, (n− k) = 4, hence dimension k = 2, , rate k/n = 2/6 = 1/3. [10%]

(Some candidates astutely observed that H had only three independent rows, so the true dimen-
sion and rate were 3 and 1/2, respectively. This answer was also given full marks.

(b) The codeword is c = [1, c2, c3, c4, 1, 1]. Using cHT = 0, we get the following equations: [15%]

1 + c2 + c4 = 0, 1 + c3 + 1 = 0, c2 + c3 + 1 = 0, c4 + 1 + 1 = 0,

from which c3 = 0, c2 = 1, c4 = 0, and hence c = [1, 1, 0, 0, 1, 1].

(c) Since each column has two ones, and row has three ones, the edge perspective polynomials are [5%]

λ(x) = x, ρ(x) = x2.

(d) The variable-to-check message along an edge depends on the channel output and the incoming
message along the other edge. The outgoing message is erased if and only if the channel input is
erased and the incoming message is an erasure. Hence

pt = εqt. (19)

The check-to-variable message along an edge in iteration t is erased if any of the incoming
messages (sent in iteration t− 1) along the two other edges is erased. Therefore,

qt = 1− P (no incoming messages erased) = 1− (1− pt−1)2. (20)

Combining the two equations, we get [20%]

pt = ε
(
1− (1− pt−1)2

)
.

The initial variable to check messages are erased if and only if the channel output corresponding
to that variable is erased. Therefore p0 = ε.

(e) The key assumption when computing each outgoing message is the independence of the incoming
messages arriving along each edge, i.e., we treat the probability of erasure along each edge as
independent. This is not strictly true in a graph with cycles, however it is a reasonable assumption
when the number of variable nodes (and check nodes) is very large and the factor graph has been
generated by picking one at random from the ensemble with a given degree distribution. [10%]

(f) We note that outputs in the range [−1, 0) can be produced only from the input x = 0, and
outputs in the range (1, 2] can be produced only from the input x = 1. Therefore, the likelihood
ratio is [10%]

L(y) =
f(y |x = 0)

f(y |x = 1)
=


1/2
0 =∞, −1 ≤ y < 0,

1/2
1/2 = 1, 0 ≤ y ≤ 1,
0

1/2 = 0, 1 < y ≤ 2.

(21)

(g) From the likelihood ratio, we observe that the channel is equivalent to a binary erasure channel:
the output is an erasure if it lies in the interval [0, 1], otherwise the input symbol is uniquely
determined from the output. Therefore the codeword corresponding to the output sequence
y = [0.1, 1.2, −0.6, 1.7, 0.5, 0.9] has the form c = [c1, 1, 0, 1, c5, c6]. Using cHT = 0, we find:

c1 + 1 + 1 = 0, c1 + c6 = 0, 1 + c5 = 0,

or c1 = 0, c6 = 0, c5 = 1. The codeword is c = [0, 1, 0, 1, 1, 0]. [15%]
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(h) From the equivalent binary erasure channel explained in part (g), the input symbols are (0/1),
and the output is an erasure with probability 1/2, or equal to the input symbol with probability
1/2. Since the capacity of the binary erasure channel with erasure probability ε is (1 − ε), the
capacity of the channel is 1− 0.5 = 0.5 bits/channel use. [15%]
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