Version Crib 3F8 Inference 2016/17

EGT3
ENGINEERING TRIPOS PART IIA

CRIB

Module 3F8

INFERENCE

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

10 minutes reading time is allowed for this paper.
You may not start to read the questions printed on the subsequent pages of this question paper until instructed to do so.

Version Crib 3F8 Inference 2016/17

1 (a) Explain what is maximum likelihood estimation and how it is used to estimate parameters in a probabilistic model from data.

$$
\begin{aligned}
& \text { a) let date be denoted } Y=\left\{y_{n} \xi_{n=1}^{N}\right. \\
& \text { parancters denoted } \theta \\
& P(Y \mid \theta)=\text { probability of data given paranetes } \\
& \text { likelihood of the parantes } \\
& \text { maximum likelihood estimates for he puranters, } \theta_{M L} \text {, are fond via } \\
& \theta_{M L}=\underset{\theta}{\operatorname{argmax}} f(y \mid \theta)=\underset{\theta}{\operatorname{argmax}} \log p(y \mid \theta)
\end{aligned}
$$

(b) A source emits N signals x_{n} drawn independently from a Gaussian distribution with mean 1 and variance 1 . The signals are measured by a receiver a fixed distance d metres away. The signals are exponentially attenuated and corrupted by independent Gaussian noise so that the measurements are given by $y_{n}=\exp (-d) x_{n}+\varepsilon_{n}$. The noise ε_{n} has zero mean and variance 1 .
The formula for a one dimensional Gaussian distribution with mean μ and variance σ^{2} is

$$
p\left(y \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(y-\mu)^{2}\right) .
$$

(i) Compute the mean and the variance of a single measurement y_{n} under the probabilistic model.

$$
\begin{aligned}
& \text { b) } \quad y_{n}=\omega x_{2}+\varepsilon_{n} \quad \text { where } \omega=e^{-d} \quad \varepsilon_{n} \sim N(0,1) \quad x_{n} \sim N(1,1) \\
& \text { i) } \mathbb{E}_{p\left(x_{n}\left(\varepsilon_{n}\right)\right.}\left[y_{n}\right]=W \underset{p\left(x_{2}\right)}{\mathbb{E}_{n}}\left(x_{n}\right)+\underset{p\left(\varepsilon_{n}\right)}{\mathbb{E}}\left(\varepsilon_{n}\right)=W=e^{-d}=\mu_{y} \\
& \mathbb{E}_{p\left(x_{n}, \varepsilon_{n}\right)}\left[y_{n}^{2}\right]=\mathbb{E}_{p\left(x_{1}, \varepsilon_{n}\right)}\left[w x_{n}+\varepsilon_{n}\right]^{2} \\
& =\mathbb{E}_{p\left(x_{n}, \varepsilon_{n}\right)}\left[\omega^{2} x_{n}^{2}+2 \omega x_{n} \varepsilon_{n}+\varepsilon_{n}^{2}\right] \\
& =\omega^{2} \mathbb{E}_{p\left(x_{n}, \varepsilon_{n}\right)}\left[x_{n}^{2}\right]+2 \omega \mathbb{E}_{f\left(k_{n}\right)}\left[x_{n}\right] \mathbb{E}_{p\left(\varepsilon_{n}\right)}\left(\varepsilon_{n}\right) \\
& +\underset{f\left(\varepsilon_{1}\right)}{\mathbb{E}}\left(\varepsilon_{n}^{2}\right) \\
& =\omega^{2} \times 2+0+1 \\
& =2 \omega^{2}+1 \\
& \text { Vaiarce is given } 2 y \\
& \begin{aligned}
\sigma_{y}^{2}=E_{p\left(x_{n}, \varepsilon_{n}\right)}\left[y_{n}^{2}\right]-\left[E_{p\left(x_{n}, \varepsilon_{n}\right)}\left(y_{n}\right)\right]^{2} & =\omega^{2}+1 \\
& =e^{-2 d}+1
\end{aligned}
\end{aligned}
$$

(ii) Use your answer to (i) to compute the likelihood of the parameter d when N measurements have been made.

$$
\text { ii) } \begin{aligned}
p\left(y_{i: N} \backslash d\right) & =\pi \frac{1}{\sqrt{2 \pi \sigma_{y}(d)}} e^{-\frac{1}{2}\left(g_{y 2}\right.}\left(y_{n}-\mu_{y}(d)\right)^{2} \\
& =\left(2 \pi \sigma_{y}(l)\right)^{-N / 2} e^{-\frac{1}{2 \sigma_{y} 2} \sum_{n}\left(y_{n}-\mu_{y}(d)\right)^{2}} \\
& =\left(2 \pi\left(1+\omega^{2}(d)\right)\right)^{-N / 2} e^{-\frac{1}{2\left(1+\omega_{(d)}^{2}\right)} \sum_{n}\left(y_{n}-\omega(d)\right)^{2}} \\
\text { where } \quad \omega(d) & =e^{-d}
\end{aligned}
$$

(iii) Four measurements are made $\left\{y_{n}\right\}_{n=1}^{N}=\{1,-2,-1,2\}$. Find the maximum likelihood setting of the parameter d for these data. You may find it simpler to first find the maximum likelihood setting for $w=\exp (-d)$ and then rearrange to find the estimate of d.

$$
\text { iii) } \begin{aligned}
\log p\left(y_{1: N}(w)\right. & =-\frac{N}{2} \log \left(2 \pi\left(1+w^{2}\right)\right)-\frac{1}{2\left(1+w^{2}\right)} \sum_{n}\left(y_{n}-w\right)^{2} \\
& =-\frac{N}{2} \log \left(2 \pi\left(1+w^{2}\right)\right)-\frac{1}{2\left(1+w^{2}\right)}\left[\sum_{n} y_{n}^{2}-2 \omega \sum_{n} y_{n}+N \omega^{2}\right]
\end{aligned}
$$

in on case

$$
\begin{aligned}
& \sum \sum y_{n}=0 \quad \sum_{n} y_{n}^{2}=1+4+1+4=10 \quad N=4 \\
& \therefore \log p\left(g_{1!N}(\omega)=-2 \log \left(2 \pi\left(1+\omega^{2}\right)\right)-\frac{1}{2\left(1+\omega^{2}\right)}\left[10+4 \omega^{2}\right]\right. \\
& 0=\frac{d}{d \omega} \log p\left(y_{1: N} \mid \omega\right)=\frac{-2 \cdot 2 \omega}{1+\omega^{2}}+\frac{1}{\chi\left(1+\omega^{2}\right)^{2}} \cdot 2 \omega\left[10+4 \omega^{2}\right] \\
& -\frac{8 W}{2\left(1+\omega^{2}\right)} \\
& 0=-8 \omega\left(1+\omega^{2}\right)+\omega\left(10+4 \omega^{2}\right) \\
& W=0 \text { is a minimum } \\
& 0=2-4 \omega^{2} \\
& \Rightarrow W_{M L}=\sqrt{\frac{1}{2}} \quad \Rightarrow d_{M L}=\frac{1}{2} \log _{e}(2)=\begin{array}{c}
0.347 \\
(3 \mathrm{st})
\end{array}
\end{aligned}
$$

Assessor's comments: The most popular question (all but two candidates attempted it). Generally very well answered, but it was clear that some candidates spent a large amount of time on this question.

Version Crib 3F8 Inference 2016/17

2 (a) Compare and contrast regression and classification tasks in machine learning.
a) in both regermin \& classiticution you get guin a truing set of input/ output pair $\left\{\underline{x}_{n}, y_{n} \xi_{n=1}^{N}\right.$ and the goal is to predict outputs y^{*} associated
inputs outputs with unseen (new) inputs x^{*}.

In regents the anfputs we real valued, $y_{n} \in R e$
In classitication the outputs we discrete valued, $y_{n} \in\{1 \ldots k\}$ where $K=\#$ otchares
(b) A dataset comprises pairs of real valued inputs x_{n} and real valued outputs y_{n} shown in Fig. 1. Suggest a suitable probabilistic model for these data that could be used to predict an output from new input. Explain your reasoning.

$$
\begin{aligned}
& \text { anexpenatical trend passed } \\
& \text { trend with though } \approx 25 \\
& \text { length rule } \cong 20 \\
& \left(\Rightarrow \text { regenian problem with nonclinew basis function) } \quad\binom{\text { otter senile chicks }}{\text { of model are out to }}\right.
\end{aligned}
$$

(c) A second set of discrete valued outputs z_{n}, shown in Fig. 2, were measured simultaneously with y_{n} so that the training data is now $\left\{x_{n}, y_{n}, z_{n}\right\}_{n=1}^{N}$. Extend the probabilistic model you proposed for part (b) so that it can be used to jointly predict both outputs from a new input. Explain your reasoning.
C) Assumption: $y_{n} 4 z_{n}$ are independent gain x_{n}

$$
\text { Note: } z_{n} \in\{1,2,3\} \text { ie. takes disocte values } \therefore \text { suggest }
$$

$$
P\left(z_{n}=k\left(x_{n}\right)=\frac{e^{w_{k}^{\top} \underline{\Psi^{2}}\left(x_{n}\right)+b_{k}}}{\sum_{l=1}^{K} e^{\omega^{\top} \underline{\Psi}}\left(x_{n}\right)+b_{k}} \quad\right. \text { (sotmax) }
$$

Linear basis functions will not be suttineent here since class 1 occas around $x_{1}<20 \& 80<x_{n}$. Quadratic, we sore other serinde ron-linew bess function world be appropriate ie. $\psi\left(x_{1}\right)=\left[\begin{array}{l}x_{1} \\ x_{1}^{2}\end{array}\right]$

$$
(\Rightarrow \text { multiclass classification with nan linew basis function) }
$$

(d) Consider the extended model you have proposed in part (c). Do the second set of outputs provide useful information about the parameters of the original component described in part (b)? Explain your reasoning.

$$
\begin{aligned}
& \text { d) The lineliheord for the moved desired in pats } b \& c \text { alone is: } \\
& \prod_{n} p\left(y_{n} \mid x_{n}, \theta_{1}\right) p\left(z_{n}\left(x_{n}, \theta_{2}\right)=g_{y}\left(\theta_{1}\right) h_{z}\left(\theta_{2}\right)\right. \\
& \text { It maximum Ictelithorol is wed to tit He mote, then } g_{y}\left(\theta_{1}\right) \text { can ex optivined to trad } \theta_{1} \\
& \text { \& } h_{z}\left(\theta_{2}\right) \text { to tint } \theta_{2} \Rightarrow\left\{y_{n}\right\} \text { do not provide nieful intimation alate } \theta_{2} \& \text { vice } \\
& \text { vera. time } \\
& \log 1(z, y \mid x, \theta)=\log g_{y}\left(\theta_{1}\right)+\log _{z}\left(\theta_{2}\right) \\
& \text { Other mollel proposals tor parts bye and snterence schemes mean lead to } \\
& \text { dfferet anvers her er it convelated noise is assumed between } y_{n} \& z_{n} \text {, } \\
& \text { if generative models we suggested ar if psia discritutions over parameters } \\
& \text { are used that we not independent: } \rho\left(\theta_{1}, \theta_{2}\right) \neq \rho\left(\theta_{1}\right) p\left(\theta_{2}\right)
\end{aligned}
$$

Assessor's comments: A large number of adequate solutions, but few were very good or very poor. Many candidates failed to identify that the second dataset in part (c) was a classification dataset. Some candidates wrote that classification and/or regression were examples of unsupervised learning, rather than supervised learning.

3 (a) Describe what clustering is and give an example application where a clustering algorithm might be used.
a) Clustering is an unsupervised malnie beaming problem in which data $\left\{y_{1}\right\}_{n=1}^{N}$ we assigned into ore of a number of cluster $\left\{S_{n} \xi_{n=1}^{N}\right.$ weer $S_{n} t\{1, \ldots, k\}$ insunhaney that "rear by" wo "similar" data points we assigned to the save cluster ad "for wry" ""dissimilar points are assigned to different chaster.

Example application: Segmentation of image pixel
(b) A simple one dimensional dataset, $\left\{y_{n}\right\}_{n=1}^{N}=\{-10.1,-9.9,9.9,10.1\}$, is modelled using a mixture of Gaussians. The mixture comprises two components with class membership probabilities $p\left(s_{n}=1\right)=\alpha$ and $p\left(s_{n}=2\right)=1-\alpha$. The component distributions are given by $p\left(y_{n} \mid s_{n}=1, \theta\right)=\mathscr{N}\left(y_{n} ; \mu_{1}, \sigma_{1}^{2}\right)$ and $p\left(y_{n} \mid s_{n}=2, \theta\right)=$ $\mathscr{N}\left(y_{n} ; \mu_{2}, \sigma_{2}^{2}\right)$ where

$$
\mathscr{N}\left(y ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(y-\mu)^{2}\right) .
$$

The parameters of the model are collectively denoted $\theta=\left\{\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \alpha\right\}$.
(i) The model is fitted using the Expectation Maximisation (EM) algorithm. The posterior distribution over the class labels for the nth data point is denoted $r_{n, k}=p\left(s_{n}=k \mid y_{n}\right)$. Write down the algorithm's M-Step update equations.

$$
\text { bi) } \begin{aligned}
\mu_{k} & =\frac{\sum_{n=1}^{N} r_{n} k y_{n}}{\sum_{n=1}^{N} r_{1} k} \\
\sigma_{k}^{2} & =\frac{\sum_{n=1}^{N} r_{n k}\left(y_{n}-\mu_{k}\right)^{2}}{\sum_{n=1}^{N} r_{n k}}=\frac{1}{N} \sum_{n=1}^{N} r_{n k}
\end{aligned}
$$

(ii) The EM algorithm is run to convergence returning a parameter estimate θ_{EM}. The estimate is found to depend on the initialisation. Sketch the various Gaussian mixture model fits that the EM algorithm returns, i.e. sketch the densities $p\left(y \mid \theta_{\mathrm{EM}}\right)$ as a function of y. Where possible, indicate the estimated parameter values approximately. Identify which estimates correspond to global optima of the likelihood.

(cont.

Assessor's comments: This question was the hardest one on the exam. Many candidates gave full derivations for the M-Step equations in part (bi). This was not asked for in the question and it was sufficient to write them directly. Some candidates struggled with part (bii) failing to identify that the maximum likelihood solutions will place a single Gaussian of zero width on one of the data points, and use the other Gaussian to model the remaining points.

4 (a) Explain what the terms Markov property, filtering and stationary distribution refer to in the context of Hidden Markov Models?
a) Markov property: S_{n} is indeperdetet of $S_{1: n-2}$ given S_{n-1} ie.
equivalently $\quad p\left(s_{1 i n}\right)=p\left(s_{1}\right) \prod_{\Lambda=2}^{N} p\left(s_{\Lambda}\left(s_{n-1}\right)\right.$
Filtering: forming the posterior distribution weer the hidden state s_{n}

$$
\text { Guin the observations up to thess time point } y_{1: n} \text { ie }
$$

$$
p\left(\sin \left(y_{i n}\right)\right.
$$

Stationery distribution: it the marginal distribution of the hidden \& observed vaialdes in a chain, $\left.p(y n, s)_{1}\right)$, converges
as $n \rightarrow \infty$ then $p\left(y_{\infty}, s_{\infty}\right)$ is the stationary
distribution.
(b) A probabilistic model for a time-series containing binary valued observations y_{n} employs binary state variables s_{n}. The transition matrix and emission matrix of the model are denoted
$T=\left[\begin{array}{ll}p\left(s_{n+1}=0 \mid s_{n}=0\right) & p\left(s_{n+1}=0 \mid s_{n}=1\right) \\ p\left(s_{n+1}=1 \mid s_{n}=0\right) & p\left(s_{n+1}=1 \mid s_{n}=1\right)\end{array}\right], E=\left[\begin{array}{cc}p\left(y_{n}=0 \mid s_{n}=0\right) & p\left(y_{n}=0 \mid s_{n}=1\right) \\ p\left(y_{n}=1 \mid s_{n}=0\right) & p\left(y_{n}=1 \mid s_{n}=1\right)\end{array}\right]$.
The forward filtering recursions have been used to process N observations, $y_{1: N}$, in order to return the posterior distribution over the N th state variable,

$$
\rho=\left[\begin{array}{l}
p\left(s_{N}=0 \mid y_{1: N}\right) \\
p\left(s_{N}=1 \mid y_{1: N}\right)
\end{array}\right] .
$$

(i) Explain how to transform the posterior distribution over the N th state into a forecast for the observations one time step into the future, i.e. express $p\left(y_{N+1} \mid y_{1: N}\right)$ in terms of ρ.

$$
\begin{aligned}
b i) \quad p\left(y_{N+1} \mid y_{1: w}\right)= & \underline{E}=\underline{I} p \\
& \text { since } \quad \begin{aligned}
I p & =p\left(s_{N+1} \mid y_{1: N}\right)
\end{aligned}
\end{aligned}
$$

(ii) Now provide a forecast for the observations τ time steps into the future by expressing $p\left(y_{N+\tau} \mid y_{1: N}\right)$ in terms of ρ.
ii) $p\left(y_{N+\Gamma} \mid y_{1: N}\right)=E \underline{I}^{r} P$

$$
\text { since } \quad T^{\tau} \rho=p\left(s_{N+\pi} \mid y_{0: N}\right)
$$

(iii) Compute the forecast $p\left(y_{N+\tau} \mid y_{1: N}\right)$ in the limit $\tau \rightarrow \infty$ when

$$
T=\left[\begin{array}{ll}
3 / 4 & 1 / 2 \\
1 / 4 & 1 / 2
\end{array}\right], E=\left[\begin{array}{ll}
3 / 4 & 1 / 4 \\
1 / 4 & 3 / 4
\end{array}\right] .
$$

Explain your reasoning.

$$
\begin{aligned}
& \text { iii) in the limit the forecast will tend to that given by He stationary } \\
& \text { distribatian of the chain. We tint the stationery distrinutimas follows: } \\
& \text { Let } P\left(S_{\infty}\right)=\underline{\alpha} \quad \text { where } \underline{\alpha}=\left[\begin{array}{c}
\alpha \\
1-\alpha
\end{array}\right]^{p l} \\
& \text { Then } \underline{\alpha}=\underline{\underline{t}} \underline{\alpha} \text { (delinision it stationery dst) } p(s \infty=1) \\
& \Rightarrow\left[\begin{array}{c}
\alpha \\
1-\alpha
\end{array}\right]=\left[\begin{array}{cc}
3 / 4 & 1 / 2 \\
1 / 4 & 1 / 2
\end{array}\right]\left[\begin{array}{c}
\alpha \\
1-\alpha
\end{array}\right]=\left[\begin{array}{l}
3 / 4 \alpha+1 / 2(1-\alpha) \\
1 / 4 \alpha+1 / 2(1-\alpha)
\end{array}\right] \\
& \Rightarrow(1 / 4+1 / 2) \alpha=1 / 2 \\
& \Rightarrow \alpha=2 / 3 \\
& \therefore p(50)=\left[\begin{array}{l}
2 / 3 \\
1 / 3
\end{array}\right] \\
& \therefore p\left(y_{\infty}\right)=\left[\begin{array}{cc}
3 / 4 & 1 / 4 \\
1 / 4 & 3 / 4
\end{array}\right]\left[\begin{array}{c}
2 / 3 \\
1 / 3
\end{array}\right]=\left[\begin{array}{l}
\frac{6}{12}+\frac{1}{12} \\
\frac{2}{12}+\frac{3}{12}
\end{array}\right]=\frac{1}{12}\left[\begin{array}{c}
- \\
7 \\
5 \\
\uparrow
\end{array}\right]_{p\left(y_{\infty}=1\right)}^{\left.p 1 y_{n}=0\right)}
\end{aligned}
$$

Assessor's comments: Well answered in the main. A number of candidates could not define what filtering was. Some made analytic errors when calculating the stationary distribution of the hidden variables.

END OF PAPER

