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EGT2
ENGINEERING TRIPOS PART IIA

Thursday 21 April 2016 9.30 to 11

Module 3G2

MATHEMATICAL PHYSIOLOGY

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (a) Explain what competitive inhibition is in the context of enzyme kinetics. [20%]

Answer: In competitive inhibition, the inhibitor and the substrate would typically bind the enzyme on the
same site, so that only one can be bound at a given time. The inhibitor therefore sequester some of the
enzyme.

Comment from examiner: Please note that it is insufficient to say that both substrate and inhibitor can bind

to the enzyme.

(b) Write a set of reactions with their rate constants to model competitive inhibition,
and derive an expression for the rate of product formation V . [30%]

Answer:

S+E
k1−⇀↽−

k−1
C1

k2−→ P+E.

E+ I
k3−⇀↽−

k−3
C2

The conservation of the number of enzyme molecules implies that [E]+ [C1]+ [C2] = E0. The quasi steady
state assumption says that the concentrations of the two complexes C1 and C2 do not change, which yields
two equations:

k1[S][E] = (k2 + k−1)[C1]

k3[I][E] = k−3[C2]

we define new combinations of the rate constants:

[S][E]
[C1]

=
(k2 + k−1)

k1
≡ KM

[I][E]
[C2]

=
k−3

k3
≡ KI

Alternatively, it is possible to use the fast equilibrium assumption, and obtain similar results except that
KM =

k−1
k1

. Both approaches are correct.

Using the conservation equation, we get:

[S](E0− [C1]− [C2]) = KM[C1]

[I](E0− [C1]− [C2]) = KI [C2]

Rearranging gives the following equation for the C1

[S](E0− [C1]−
[I](E0− [C1])

KI +[I]
) = KM[C1]
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yielding the expressions:

[C1] =
[S]E0KI

[S]KI +[I]KM +KIKM

[C2] =
[I]E0KM

[S]KI +[I]KM +KIKM

Thus the overall rate of the reaction is:

V = k2[C1] =
k2[S]E0

[S]+KM(1+[I]/KI)

V =
Vmax[S]
[S]+K′M

with K′M = KM(1+[I]/KI)

(c) Use a graphical representation to illustrate the effect of the inhibitor concentration
on the product formation rate. [10%]

Answer: The intercept with the y-axis, 1/Vmax is unchanged, but the slope increases.

Increasing amount
of inhibitor

(d) The following data show how the rate of product formation V depends on the
concentrations of substrate S and inhibitor I for two particular enzyme reactions. In each
case, indicate if it is consistent with a competitive inhibition model, and if it is, extract as
much information as you can about the equilibrium constants.

(i)
[S] (µmol L−1) 3 5 10 30 90 900

No inhibitor V (µmol L−1 min−1) 10.4 14.5 22.5 33.8 40.5 44.5
[I]=0.01 µmol L−1 V (µmol L−1 min−1) 4.1 6.4 11.3 22.6 33.8 44.4

[20%]

Answer: The following figure shows all the data in a Lineweaver-Burke plot. It looks straight
enough and seems consistent with a simple enzyme model.
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It is apparent from the table (and the graph) that inhibitor 1 preserves Vmax, as expected from
competitive inhibition.
We find that Vmax ≈ 44.5 µmol L−1 min−1.
From the table alone, one can see that V is halfed for [S] ≈ 10 µmol L−1. This is also when [S] =
KM , hence KM ≈ 10 µmol L−1.
The same argument applied to the case with the inhibitor shows that the speed is halfed when [S] =
KM(1+[I]/KI) ≈ 30 µmol L−1.
Similar values could be extracted from the slopes and intercepts of the graphs with and without
inhibitor, with a comparable level of precision.
From the data above, one finds that I]/KI ≈ 2, hence KI ≈ 5 ·10−3 µmol L−1.

(ii)
[S] (µmol L−1) 3 5 10 30 90 900

No inhibitor V (µmol L−1 min−1) 10.4 14.5 22.5 33.8 40.5 44.5
[I]=0.01 µmol L−1 V (µmol L−1 min−1) 2.1 2.9 4.5 6.8 8.1 8.8

[20%]

Answer: It is clear already from the table that inhibitor B has a different value for Vmax and could

not match a competitive inhibition model.
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2 Certain organisms, such as the colonial algae Volvox, have all their cells arranged
on the surface of a sphere, with only a single cell in the thickness of the layer. To survive,
these cells need to collect oxygen and nutrients from their environment. In this question,
we investigate if diffusion is sufficient as a transport mechanism to keep the organism
healthy. We will focus on oxygen transport.

(a) Consider such a spherical organism with radius R. Assume the cells at the surface
consume an amount ρ of oxygen per unit time and area. What is the total amount of
oxygen consumed by the whole organism per unit time? [10%]

Answer: We just need to integrate ρ over the surface of the sphere. The amount needed per unit time is:

Q = ρ4πR2

(b) What is the maximal amount of oxygen that the organism can collect per unit time in
the steady state through diffusion alone, as a function of R, the coefficient of diffusion D
of oxygen in the organisms environment (mostly water), and the concentration of oxygen
c0 away from the organism? [35%]

Answer: In the previous question, we calculated what is needed for the organism to survive. Because the
oxygen can only reach the cells through diffusion from the external environment, there must be a gradient
of concentration at the viscinity (but outside) of the sphere, leading to a net flux balancing the consumption.
To find the flux, we must find the concentration profile and use Fick’s law. To find the concentration profile
we need to solve the diffusion equation outside of the organism, in steady regime.

Diffusion equation in spherical polar (see databook for operators):

1
r2

∂

∂ r

(
r2 ∂c

∂ r

)
= 0

The general solution takes the following form: c = A
r +B.

What are the boundary conditions? We know that away from the organism, the concentration is c0, so
c(∞) = B = c0.

What about the second boundary condition? Intuitively, the larger the concentration drop at the viscinity
of the organism, the larger the gradient and the larger the flux. So the maximum flux is achieved when
c(R) = 0, which is sufficient to find the solution. If one wants to follow a more mathematical approach
instead, we can write the flux as J(r) =−D ∂c

∂ r = DA/r2. A must be negative for oxygen to go towards the
centre. Since we want the flux inwards to be maximum, A has to be as negative as possible, while keeping
c(R) = A

R + c0 ≥ 0. This implies that A ≥ −c0R. The best solution is therefore when A = −c0R. Hence
c(r) = c0

(
1− R

r

)
.

The flux at the surface of the organism is J(R) = −Dc0R/R2. The total diffusive flux integrated over the
surface is Qd = 4πR2‖J(R)‖= 4πR2 ·Dc0R/R2 = 4πDc0R.

Comment from examiner: Very few students answered this question properly. Many tried to solve the
reaction-diffusion equation within the sphere, which cannot provide any information about the supply from
the environment.
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(c) Under what condition is diffusive transport sufficient to keep the organism properly
oxygenated? [10%]

Answer: The maximum diffusive flux must be larger than the need of the organism for it to be properly
oxygenated: Qd > Q.

4πDc0R > ρ4πR2

This set essentially a constraint on the maximal size of the organism:

R <
Dc0

ρ

(d) Write the expression for the oxygen concentration at the surface of the organism
when R = 1

2
Dc0

ρ
. [35%]

Answer: We are looking for the concentration c(R) for which the diffusive surface flux balances the need
of an organism of size R smaller than the critical size obtained above. The general solution of the diffusion
equation is: c(r) = A

r + c0 (with A negative).

The expression for the total flux then become: Qd = 4πR2 ·D−A
R2 =−4πDA.

Equating Qd to the needs of the organism Q:

Qd =−4πDA = Q = ρ4πR2 = ρ4π

(
1
2

Dc0

ρ

)2

=
πD2c2

0
ρ

A =−
Dc2

0
4ρ

=−Rc0

2

c(R) =−Rc0

2R
+ c0 =

c0

2

(e) The radius R of Volvox carteri ranges from about 100 µm to 500 µm. Is diffusive
transport sufficient to supply the cells with oxygen? If it isn’t, suggest other mechanisms
that might help. The following figures might inform your answer:

ρ = 1014cm−2 s−1, c0 = 1017cm−3 and D = 2 ·10−5 cm2 s−1. [10%]

Answer: Dc0
ρ

is of the order of 200 µm. The largest Volvox carteri would therefore not be able to get their

oxygen by diffusion. Transport of oxygen therefore needs to be increase by other mechanisms such as

advection, or migration/swimming.
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3 (a) What are the units of measurement (if any) for the following physical
quantities?

• (diffusion) flux

• diffusion coefficient

• electrovalency

• electric field

• Faraday constant

• universal gas constant

• Nernst potential

• ionic concentration

• dielectric constant

• channel permeability

[20%]

Answer: Multiple equivalent solutions are possible that translate to the same combination of basic SI units
(potentially with some prefixes).

•mol / (m2 s)

•m2/s

•1 (unitless)

•V/m (or N/C)

•C/mol

•J / (mol K)

•V

•mol / m3

•C/(V m) or F/m

•m/s

(b) This question is about the Nernst potential.

(i) Derive the value of the Nernst potential of an ion, defined as the membrane
potential (electric potential difference between the two ends of a channel) when the
flux of the ion is zero everywhere inside the channel. Start from the Nernst–Planck
equation describing the flux of an ion:

J(x, t) =−D
(

∂

∂x
c(x, t)+

zF
RT

c(x, t)
∂

∂x
φ(x, t)

)
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where x is one-dimensional space, t is time, J is the flux, φ is the electric potential, F
is the Faraday constant, R is the universal gas constant, T is absolute temperature, D
is the diffusion coefficient, c is the concentration, and z is the valence of the ion. In
your derivation, you can use the following definitions: let L denote the length of the
channel, V (t) = φ(L, t)−φ(0, t) denote the membrane potential, and ci(t) = c(0, t)
and ce(t) = c(L, t) denote the concentration of the ion at the intra- and extra-cellular
end of the channel, respectively. [20%]

Answer:

∂

∂x
c(x, t)+

zF
RT

c(x, t)
∂

∂x
φ(x, t) = 0

∂

∂x
φ(x, t) =−RT

zF

∂

∂x c(x, t)
c(x, t)

∂

∂x
φ(x, t) =−RT

zF
∂

∂x
lnc(x, t)

By integrating both sides of the last equation wrt. x between 0 and L, we obtain

φ(L, t)−φ(0, t) =−RT
zF

(lnc(L, t)− lnc(0, t)) =−RT
zF

ln
c(L, t)
c(0, t)

V (t) =
RT
zF

ln
ce(t)
ci(t)

which is the Nernst potential of the ion.

(ii) Demonstrate with a derivation that the converse of the previous situation may
not always hold, i.e. the flux of an ion may not be zero everywhere at the moment
when the membrane potential reaches its Nernst potential. [20%]

Answer:

V (t) =
RT
zF

ln
ce(t)
ci(t)

φ(L, t)−φ(0, t) = −RT
zF

(lnc(L, t)− lnc(0, t))∫ L

0

∂

∂x
φ(x, t) dx = −

∫ L

0

RT
zF

∂

∂x
lnc(x, t) dx

∫ L

0

(
∂

∂x
φ(x, t)+

RT
zF

∂

∂x c(x, t)
c(x, t)

)
dx = 0

∫ L

0

∂

∂x c(x, t)+ zF
RT c(x, t) ∂

∂x φ(x, t)
c(x, t)

dx = 0∫ L

0

J(x, t)
c(x, t)

dx = 0 (1)

Thus, in this situation, rather than the flux being zero, all what we can say is that the integral of the

relative flux along the channel is zero.
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(iii) In order to prove that the flux of an ion is zero at the Nernst potential, one
must take the steady state limit. What defines this steady state limit, what are the
relevant boundary conditions, what are the assumptions underlying these boundary
conditions, and why are these assumptions justified? [20%]

Answer: We use the term steady-state for an ion channel to refer to a condition when we keep
the concentration at the two ends of the channel constant, and similarly, we also hold the voltage
between the two ends of the channel (the membrane potential) constant. In such a condition, after
waiting long enough (formally, asymptotically, i.e. in the infinite time limit), ionic concentrations
and the electric potential inside the channel do not change any more. From these it follows that in
steady state, the flux is constant along the channel, although not necessarily zero.
There are two assumptions.

A. The concentration of the ion at the two ends of the channel remains constant despite the
flux of the ion not necessarily being zero. This is justified because there are mechanisms (such
as ion pumps) in place in the membrane that actively maintain ionic concentrations in the extra-
and intracellular space (i.e. at the two ends of the channel), and because the actual absolute
number of ions passing through the channel is diminishingly small compared to the number of
ions at the two ends, such that concentrations at the two ends hardly change (or rather, they
change only very slowly, see also separation of time scales argument below).

B. The membrane potential is constant for an infinite amount of time. Although this is
not formally true, it can be justified by a separation of time scales argument. This means that
the time scale for reaching equilibrium flux is much shorter that the time scale on which the
membrane potential is changing. The former time scale is roughly given by the time it takes
for the ion to diffuse from one end of the channel to the other, and is on the order of 0.1 µs,
while the latter time scale is typically on the order of 1ms, so indeed, there is a several orders
of magnitude separation of time scales.

(c) Beside the usual currents of the Hodgkin–Huxley model responsible for action
potential generation, some neurons also include a so-called A-type potassium current.
The single gating variable, a, of this A-type current activates slowly with depolarisation,
and deactivates even more slowly with hyperpolarisation, such that it could be modelled
simply as having a steady-state value a∞ that switches from 0 to 1 at a threshold voltage
of 50mV, and a time constant τa that is 200ms and 20ms below and above this threshold,
respectively.

(i) Sketch and describe in words the behaviour of a in time when the cell is made
to fire at around 60Hz for several hundred milliseconds. For simplicity, assume that
the maximal conductance of the A-type current is near zero, so that it has no visible
effect on the membrane potential. [10%]

Answer:
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t [ms]
0 200 400 600 800 1000 1200

l [
1]

0

0.2

0.4

0.6

0.8

1

At the time of spikes there will be rapid ‘jumps’ in a (governed by the faster, 20ms activation time

constant) which will slowly decay between spikes (governed by the slower, 200ms deactivation time

constant), but since at 60Hz the inter-spike interval is much shorter than the time constant of decay,

this decay will hardly be visible. This will result in a step-by-step accumulation of a until it reaches

some ‘steady’ state value around which it hovers as spikes occur.

(ii) Sketch and describe in words the membrane potential trace of the cell in
response to the stimulation described above when the maximal conductance of the
A-type current is well above zero. [10%]

Answer:

t [ms]
0 200 400 600 800 1000 1200

V 
[m

v]

-20
0

20
40
60
80

100
120

The current hardly influences the shape of action potentials (except for some small decrease in their

amplitude) as even its faster activation time scale (20ms) is much slower than the time constants

of the other channels (all below 10ms). However, the accumulation of the A-type potassium

conductance will make it increasingly harder for the cell to fire, such that the inter-spike-intervals

will grow, and eventually the cell is going to stop firing altogether.
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4 (a) Explain why capillaries have small holes called fenestrations. Give an
approximate value for their diameter. [10%]

Answer: These holes allow water to go through the vessel wall, but not large globular proteins. These holes

have a size of the order of a few tens of nanometres. Since globular proteins do not cross the vessel wall,

they contribute to an osmotic pressure term that allows water to get back in at the other end of the capillary

beds, where the hydrostatic pressure is lower.

(b) Consider a capillary of length L oriented along the x axis. The hydrostatic pressure
inside the capillary is denoted Pc(x), while the hydrostatic pressure in the surrounding
tissue is Pi. The osmotic pressures in blood and tissue are πc and πi respectively. Write
down the expression for the total pressure difference ∆P(x) that drives the movement of
water through the capillary wall as a function of Pc(x), Pi, πc and πi. Write a simple
relationship that relates ∆P(x), the flux of water φ(x) moving through the vessel wall per
unit of capillary length, and the permeability per unit length K f . [15%]

Answer: One has to correct hydrostatic pressures with osmotic pressures on both sides, and subtract.

∆P(x) = K f ((Pi−πi)− (Pc−πc))

The fluid flux through the fenestration is proportional to the pressure drop. The proportionality coef is by
definition K f :

φp = K f ∆P(x)

φp = K f (Pi−πi−Pc +πc)

(c) The flow rate of blood along the capillary is denoted q(x). The influx at the entry
x = 0 and exit x = L are assumed to be identical, q(0) = q(L) = Q. The capillary
hydrodynamic resistance, ρ , is defined by dPc

dx = −ρq(x) and is constant along the
capillary. Assume at this stage that Pi, πc and πi are homogeneous along the capillary.

(i) Derive the differential equation satisfied by the blood hydrostatic pressure
Pc(x) in this model. [15%]

Answer: Mass (or volume) conservation provides the following relationship:

q(x)+φp(x)dx = q(x+dx)

Leading to:

dq
dx

= φp(x) = K f (Pi−πi−Pc +πc)

Since the vessel has some hydrodynamic resistance:

dPc

dx
=−ρq(x)
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We can then eliminate q:
d2Pc

dx2 =−ρK f (Pi−πi−Pc +πc))

Comment from examiner: A small number of students defined φq per unit area instead of per unit
length, and ended up with slightly different expressions. This was accepted as long as it was correct
and consistent.

(ii) Show that the following expression is solution of the problem:

Pc(x) = Pi +πc−πi−
Pc(0)−Pc(L)

2

sinh
(√

ρK f (x−L/2)
)

sinh
(√

ρK f L/2
)

[20%]

Answer: The expression can be differentiated twice and inserted in the differential equation to show
that it is solution.

d2Pc

dx2 =−Pc(0)−Pc(L)
2

√
ρK f

√
ρK f

sinh
(√

ρK f (x−L/2)
)

sinh
(√

ρK f L/2
) =−ρK f (Pi−πi−Pc +πc))

(iii) Find the relationship between the entry flow rate Q and the pressure drop
along the capillary Pc(L)−Pc(0). [15%]

Answer: We need to differentiate Pc to find q and use the boundary conditions:

q(x) =
Pc(0)−Pc(L)

2ρ

√
ρK f

cosh
(√

ρK f (x−L/2)
)

sinh
(√

ρK f L/2
)

Using q(0) = Q, we get:

Q =
1
ρ

Pc(0)−Pc(L)
2

√
ρK f

tanh
(√

ρK f L/2
)

This could be more elegantly written as:

Q =
1
ρ

√
ρK f L/2

tanh
(√

ρK f L/2
) Pc(0)−Pc(L)

L

(iv) What is the amount of water filtrating through the tissue? [10%]

Answer:

Q f = Q−q(L/2)

Q f = Q
(
1− sech

(√
ρK f L/2

))
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(d) Is the approximation that q(0)= q(L) physiologically realistic? What would happen
in the tissue if q(0) and q(L) were different? [15%]

Answer: It is likely that in practice the amount going back to the circulatory system will be different as

this relies on a very particular relationship between blood pressure, pressure drop and flow rate. There is in

practice always an excess of plasma leaving the vessel, later collected by the lymphatic system.

Page 13 of 14 (TURN OVER



Version AK/2

Comments on Questions

Q1

Part (a) was straightforward and most students answered it properly. For part (b) students
could choose either fast equilibrium or quasi-steady-state assumption, and both worked
fine (although giving a slightly different meaning to the solution). Some students however
announced one method, but used the other, so there seems to be some confusion about the
meaning of these two methods. The other parts were generally well addressed with no
systematic error.

Q2

This question, although relatively straight-forward once one realises how to approach it,
confused most students who attempted it. All students did correctly the first part, but
too many struggled with the second part. Instead of focussing on solving the diffusion
equation in the exterior domain, many assumed that it had to be approached by a
reaction-diffusion model inside the sphere, which could not lead to a meaningful solution.
Considering the large number of students who failed to identify the right approach, the
mark scheme has been adjusted. Marks were also awarded in order to reward partial
solutions, approximate answers, or correct equations that were solved inside the sphere
rather than outside.

Q3

All parts were well answered by some of the students, with the last part proving to be the
most difficult - as expected as it required thinking beyond the lecture material.

Q4

The question was generally well answered. A few students did not think about using
mass conservation for part (c), and a decent number were not comfortable enough with
the differentiation of hyperbolic trig functions.

END OF PAPER
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