
Engineering Tripos Part IIA THIRD YEAR

Module 3G4: Medical Imaging & 3D Computer Graphics

Solutions to 2016 Tripos Paper

1. Ultrasound and the Radon transform
(a) (i) Ultrasound signals that are backscattered from features deep in the body are more
greatly attenuated than signals backscattered from features near the surface of the skin,
because the ultrasound has to pass a greater distance through attenuating tissue as it travels
from the probe to the backscattering feature and back to the probe again. Similarly, the
ultrasound signal from features that are deeper in the body takes longer to get back to
the probe. It is therefore the case that the longer it takes a backscattered signal to get
back to the probe, the more it will be necessary to amplify that signal to compensate for
the attenuation caused by the tissue along the path it has travelled. Ultrasound machines
therefore have an automatic system that increases the amplification of the received signal
as a function of the time after the ultrasound pulse was transmitted. This is called time-gain
compensation. [15%]

(ii) The axial resolution of an ultrasound machine is about half the width of the transmitted
pulse. The pulse must contain at least one wavelength at the probe centre frequency, so
the resolution is improved for shorter wavelengths, which means for higher frequencies.
At medical imaging frequencies, ultrasound is attenuated by tissue at a rate that is propor-
tional to the frequency. So higher frequencies lead to greater attenuation and hence smaller
scanning depths. The result is that higher frequencies give better resolution but can only
be used to scan more superficial structures (e.g. scanning the thyroid at 8 MHz). Lower
frequencies offer lower resolution but can achieve greater scanning depths (e.g. scanning
the abdomen at 3 MHz). [20%]

(iii) Ultrasound backscatter is caused mostly by variations in the specific acoustic impedance
of the material:

Z = ρc =
√
Ksρ

where Z is the specific acoustic impedance of the material, ρ is the density, c is the sound
speed, and Ks is the adiabatic bulk modulus. Hence backscatter is caused by variations in
the product of the adiabatic bulk modulus and the density. [15%]

(b) (i) The Radon transform of a function which has values of zero everywhere except for
on a strip of width w, where it takes the value v, is given by the length of the line integral
passing through the strip multiplied by v. Let l be the length of the line integral passing
through the strip for which the function takes a non-zero value. From the diagram below,
we can see that w/l = sin θ. Hence l = w/ sin θ. Therefore, provided θ ̸= 0, the Radon
transform of the function is given by

wv

sin θ

1



For f we have w = 1 and v = 2. For g we have w = 2 and v = 1. So, as long as θ ̸= 0,
the Radon transforms of the function f(x, y) and the function g(x, y) are both given by
2 cosecθ for all values of s.

As the strip is of infinite extent in the direction θ = 0, the Radon transform in this direction
is infinite for both f and g when 0 ≤ s < w and zero otherwise. As they have different
values of w, they will have different parts of the Radon transform that tend to infinity. [30%]

(ii) First, it is important to note that the functions f and g both have non-zero values
stretching to infinity in both the positive and negative y directions. Objects of infinite
extent do not occur in reality, so stripes in computed tomography subjects are going to
produce projections that are different to the abstract results calculated here.

The two Radon transforms are different when θ = 0 and this provides clear information
to determine the width of the stripe. For a non-infinite feature, the value of the transforms
when θ = 0 will be finite even when 0 ≤ s < w. There will thus be no difficulty calculating
unique values for w and v. Furthermore, for a practical stripe feature of non-infinite extent,
there will be a difference between the projections of f and g for non-zero values of θ, when
θ is close to zero such that the line of integration crosses an end of the feature. This will
provide even more distinction between the two Radon transforms. Hence, in reality, the
calculation in (i) does not indicate any problem with the tomographic reconstruction of
stripe features. [20%]

Assessors’ remarks: In the exam, candidates were generally more successful if they un-
derstood the principle behind the Radon transform (i.e. the fact that it is a line integral at a
given angle and distance from the origin), and drew a diagram to relate this to the problem
in the question. Those candidates that worked from the formula for the Radon transform
alone found it harder to produce a correct result.

2



2. Laser range scanning and cubic B-splines
(a) (i)

From the figure above:

L

d
= tan γ = tan(α + β) =

tanα + tan β

1− tanα tan β

Also,

tan β =
x

f

Rearranging and combining:

d =
L(1− x

f
tanα)

tanα + x
f

=
L(f − x tanα)

x+ f tanα
(1) [20%]

(ii) There are three values, x ∈ {0, 2, 6}, given by multiplying the pixel locations by the
pixel width. Substituting each of these in turn into equation (1) gives d ∈ {320, 220, 120}
respectively. Hence the depth plot is as follows:

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

y

d

3



[15%]

(iii) The pixel width contributes an error of ±0.5 pixels = 1
3

mm. At the zeroth pixel,
putting −1

3
into equation (1), and subtracting 320 gives an error of 23 9

17
= 23.53mm.

At the 9th pixel, putting 61
3

into this equation and subtracting from 120 gives an error of
515
37

= 5.41mm.

Alternatively, a very rough approximation to these errors can be determined by noting that
0.5 pixels = 1

6
of the change in depth for the first transition, since this covers three pixels.

Since the change in depth is 100, then the error is roughly 100
6

= 162
3

mm. By a similar
argument, the minimum error is then 100

12
= 81

3
mm. [15%]

(b) (i)

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

y

d

[15%]

(ii) The maximum error is at any of the pixels next to the depth transitions, for instance
the fourth pixel. Using the normal formulation and considering the t = 0 start of the curve
from the fourth to the fifth pixel, we have:

d =
[
t3 t2 t 1

] 1
6


−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0




320
320
220
220



= [0 0 0 1]
1

6


−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0




320
320
220
220



=
1

6

[
1 4 1 0

] 
320
320
220
220


= 320× 5

6
+ 220× 1

6
= 320− 50

3

4



Hence the error is 50
3
= 162

3
mm. [25%]

[It might be suggested that the maximum error is exactly at the midpoint of the step, where
the curve passes through 270, giving an error of 50 mm. However, this assumes that the
surface is piecewise continuous, whereas it might be smooth at this boundary, we simply
do not know. So the error should really be evaluated at an actual measurement point.]

(iii) The error in (b)(ii) is in-between those calculated in (a)(iii). Hence, for one of the
transitions (between 8th and 9th pixels), the cubic approximation is clearly introducing
additional error. For the other transition (between 4th and 5th pixels), it might be acting
to reduce the error, depending on whether it is a good assumption that the surface being
scanned is actually smooth or not. [10%]

Assessors’ remarks: This question concerned the analysis of laser scanners and also in-
terpolation of data using piecewise B-splines. While there were many correct answers to
the simple trigonometric proof in (a)(i), there were also surprisingly many problems, given
that this was a simplified version of the derivation in the lecture notes. Equally surprising
was the number of candidates making numerical mistakes in (a)(ii), which only involved
evaluating the given equation. Understanding of the potential errors in (a)(iii) was bet-
ter: candidates were given credit for any of a number of possible answers so long as the
arguments were sound. The B-spline sketches in (b)(i) were mostly good, and there were
several perfect answers for the B-spline error in (b)(ii). Many discussions in (b)(iii) showed
a good general understanding of the technique.

3. View volumes and projection matrices
(a)

−d

ys

sz

Ov

vz

yv

ymax

ymax−

0

1

−1

1−n −f

[20%]

(b) (i) By inspection of the diagram above, it is evident that the field of view in the y direc-
tion is 2 tan−1(ymax/d). For this specific projection, this is 2 tan−1(1) = 90◦. Likewise,
the field of view in the x direction is 2 tan−1(xmax/d) = 2 tan−1(4/3) = 106.3◦. [15%]

(ii) Dividing the two non-zero elements in the third row of the projection matrix, we find
n = 10. It follows, manipulating either of the non-zero expressions in the third row of the
matrix, that f = 1000. [10%]

5



(iii) The aspect ratio of the image plane is xmax: ymax = 4:3. Assuming square pixels, a
640×480 window has the same aspect ratio and there will be no geometrical distortion. In
contrast, a 1920 × 1080 window has a mismatched aspect ratio of 16:9, so objects would
appear stretched in the x direction by a factor of 4/3. [15%]

(c) (i) Instead of the current 640 × 480 window, we now need the view volume to project
to a 2 × 2 pixel square region at the centre of this window, so that anything more than
one pixel away from the click point is outside the view volume. Hence, compared with
the on-screen projection, the off-screen projection needs to have xmax reduced by a factor
of 640/2 = 320, and ymax reduced by a factor of 480/2 = 240. The off-screen projection
matrix is therefore 

240 0 0 0
0 240 0 0
0 0 −100/99 −1000/99
0 0 −1 0


[20%]

(ii) Had the click point not been at the centre of the window, the off-screen view volume
would not be symmetrically disposed around the view plane normal. Such view volumes
are supported by OpenGL, but the resulting projection matrices have a different structure
to the 3G4 simplification that underpins this question. [10%]

(iii) The important point here is to realise that there might be triangles occluding other
triangles, and the user presumably wanted to select the visible triangle nearest to the view-
point. So, after narrowing the selection down to those triangles covering the click point in
the x and y directions, we should choose the one with the smallest depth value. [10%]

Assessors’ remarks: This question tested candidates’ understanding of perspective pro-
jection and clipping. Almost all candidates offered good sketches of the view volumes in
(a), and most were fine calculating the various parameters in (b), though some missed the
obvious point in (b)(iii) and instead discussed aliasing artefacts and perspective compres-
sion of depth values. Answers to (c) were more variable, with only around a quarter of
candidates arriving at a plausible off-screen projection matrix in (i), and nobody pointing
out that the given projection matrix is invalid in (ii). Answers to (c)(iii) were better, with
most candidates suggesting some form of depth sorting.

4. Ray tracing and intersection tests
(a) Recursive ray tracing is a rendering technique which accounts for a degree of indi-
rect illumination. It elegantly combines hidden surface removal, transparency effects and
shadow computation into a single model.

Simple ray tracing algorithms work in world coordinates. A ray V is fired from the centre
of projection through every pixel on the screen. When the ray strikes an object at P1,
further rays are spawned. One ray, L1, heads for the ith light source. If L1 passes through
other objects on the way, then the illumination intensity is attenuated by a shadow factor
Si, depending on the number and opacity of objects in the way.

6



N1

1

T1

T2

N3 R3

L3N2
R

2R

T

P
3

P
1

P
2

L1

L
2

3

Screen
Pixel

V

As well as these shadow feelers, the algorithm also spawns a reflection ray R1 and a
refraction ray T1. The direction of the refraction ray is determined from the refraction
indices using Snell’s law. The intensity of the pixel is then

Iλ = cλIaka +
∑
i

SifattIpi(cλkdLi.N+ ks (Ri.V)n) + ksIrλ + ktItλ

where Irλ is the intensity of the reflection ray and Itλ is the intensity of the refraction ray.
kt is a transmission coefficient in the range 0 to 1.

Values for Irλ and Itλ are found by recursively evaluating the equation at the surfaces R1

and T1 next intersect (P2 and P3), with P1 as the new viewpoint. So the progress of the
algorithm follows a ray tree:

L1

R2

P
1

L
2 L3

P
3P

2

T2 R3 3T

R1 T1

V

The tree is constructed top down, until either a ray fails to intersect an object or some
predetermined maximum depth is reached. The tree is then evaluated bottom-up, as each
node’s intensity is computed from its children’s intensities. Care must be taken to prevent
aliasing in the ray-traced image.

In a naive implementation, every ray in the tree needs testing for a possible intersection
with every polygon. The required number of intersection tests is therefore

nrnp [(1 + nl) + 2(1 + nl) + 4(1 + nl) + . . .] = nrnp(1 + nl)(2
d+1 − 1)

(summing the geometric progression inside the square brackets). [40%]

7



(b) (i)

while not finished

output(X,Y);

if next_x < next_y

next_x = next_x + dx;

X = X + 1;

else

next_y = next_y + dy;

Y = Y + 1;

end

end [20%]

(ii) Depending on the ray’s direction, we may need to decrement X and/or Y instead of
incrementing. There are four increment/decrement combinations, and we would need to
pick the right one depending on the quadrant in which the ray’s direction lies. We would
also need to handle degenerate cases where the ray is parallel to the x or y axis. [10%]

(iii) We would need to calculate increments and intersections in the z direction too, and
look for the smallest of next x, next y, next z each time around the loop. There would
be eight increment/decrement combinations to choose between, depending on the direction
of the ray, and there would be one more special case when the ray is parallel to the z axis. [10%]

(c) For a sensible voxel size, and an array covering the whole stadium, it is likely that the
teapot will fit inside a single voxel. So we would find ourselves traversing empty voxels
until we come across the one containing the teapot, and then we would end up checking
for intersections with every one of the polygons that make up the teapot.

A non-uniform array would perform better in situations like this. We could have a finer
subdivision around the teapot, and much larger voxels in the empty regions. The one-off
task of constructing the non-uniform array and populating it with polygons (typically using
a k-d tree) would take longer than the uniform case, but the subsequent intersections tests
would be much quicker. [20%]

Assessors’ remarks: Part (a) of this question tested candidates’ understanding of basic ray
tracing as presented in the lecture course. Parts (b) and (c) then asked candidates to explore
a method for speeding up the ray/polygon intersection tests. While some candidates made
excellent attempts at even the more speculative parts of the question, most answers were
rather poor, even with regards to the book work in (a). Candidates’ inability to write simple
pseudo-code for voxel traversal in (b)(i) was particularly disappointing. Many attempts
were obviously truncated, suggesting rushed efforts right at the end of the examination.

Andrew Gee, Richard Prager & Graham Treece
May 2016

8


