
Model solution – Q1

1. (a) • Possible advantages over direct methods, e.g. LU decomposition: (i) reduced mem-

ory usage, (ii) faster (reduced algorithmic complexity), (iii) some can be easily

parallelised, (iv) can terminate early if high accuracy is not needed, (v) can often

solve singular problems (with known nullspace).

• Possible disadvantages over direct methods: (i) slow to converge or may fail for some

matrices, e.g. poorly conditioned matrices, (ii) maybe applicable only to specific

matrix type, e.g. conjugate gradient method is only for symmetric positive-definite

matrices, (iii) can be di�cult to predict/model performance a priori.

(b) i. The columns of A sum to one, hence the rows of A

T
will sum to one, hence:

A

T1 = 1. (1)

This implies that � = 1 is an eigenvalue of A

T
. Since the eigenvalues of A and A

T

are the same, � = 1 must be an eigenvalue of A.

ii. Since the eigenvalues ofA andA

T
are the same, settingB = A

T
, for an eigenvector

y of B, we have

By = �y,

which can be expressed in terms of components as �yi =
P

j bijyj . It then follows

that

|�yi| = |�||yi| = |
X

j

bijyj |


X

j

bij |yj |

 |y|1

for all i (recall that |y|1 = maxi |yi|). The last inequality follows from bij � 0 andP
j bij = 1 8i. The above inequality can be true only if |�|  1

iii. If a vector is repeatedly multiplied by a matrix, the resulting vector will tend

towards the eigenvector associated with the largest absolute eigenvector. This is

known as power iteration:

xn+1 = A

n
x0

or equivalently (in the case of exact arithmetic)

xn+1 =

Axn

|Axn|

where xn+1 is an approximation of an eigenvector of A.

For the matrix

A =


0.0 0.3
1.0 0.7

�
(2)

we have

A

3
=


0.21 0.237
0.79 0.763

�

and

A

3 ⇥
1 1

⇤T
=

⇥
0.447 1.553

⇤T
= x3 ⇡ x

The actual eigenvector is in the direction

⇥
0.3 1

⇤T
. Scaled similarly this approxi-

mation is

⇥
0.288 1

⇤T
, so not a bad approximation.

1

3M1 Final Crib 2015



3M1 Final Crib 2015 
 

2 

Assessor’s Comments: 

61 attempts, Average mark 10.0/20, Maximum 18, Minimum 1. 

The low average on this question reflects the high number of partial attempts. 
Few answers to part (a) mentioned most of the salient points expected.  

Several (not very successful) answers were based more on the content of the Optimization part of 
3M1 than the Linear Algebra part. Discussions of the effectiveness of Newton’s Method are not 
relevant to the solution of 

€ 

Ax = b… 

Few answers to part (b)(i) used the hint in the expected way. Most sought (successfully) to show 
that the matrix 

€ 

A− I  was singular and thus that 1 was an eigenvalue. 

Several answers to part (b)(ii) involved circular arguments, often in the context of the l2 norm. 

A number of answers to (b)(i) and (b)(ii) took 

€ 

A  to be a 

€ 

2 × 2  and then made dubious claims about 
the generalisability of the proof given. 

Approaches in part (b)(iii) were often not properly justified or not checked against the (easily 
found) eigenvector corresponding to an eigenvalue of 1 to confirm that a good approximation was 
indeed being found. 
Some candidates tried to apply Richardson’s method, which solves 

€ 

Ax = b  rather than 

€ 

Ax = x , in 
part (b)(iii) rather than the expected power iteration method. 
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Q2 

(a) The penalty function method (PFM) penalizes the objective function if the solution lies 
outside the feasible region. 

 The barrier function method (BFM) attempts to restrict the search to the feasible region by 
penalizing solutions that approach its edge. 

 The PFM can handle both equality and inequality constraints. 

 The BFM can only handle inequality constraints. 

 The BFM requires a feasible starting point; the PFM does not. 

 The PFM can iterate through infeasible space; the BFM cannot. 

 The BFM always yields a feasible answer; the PFM may not. [20%] 

(b) Minimize 

€ 

f (ro) = ρπ ro
2 − ri

2( ) 

 subject to 

€ 

g1(ro) = 2.0 ×103 −U(ro) ≤ 0  

 where 

€ 

U(ro) =
1
ri

1
rihi

+
1
roho

" 

# 
$ 

% 

& 
' 
−1

 

 and 

€ 

g2(ro) = ri − ro < 0  [10%] 

(c) Minimize 

€ 

q(ro, pk) = f (ro) + pkP(ro)  

 where  

€ 

P(ro) =max 0, g1(ro)[ ] 2  

 The bound 

€ 

g2  can be satisfied by restricting the search space appropriately and does not 
require an additional penalty term.  [10%] 

(d) From the 3M1 data sheet for the Golden Section method 

€ 

Δx
d

= 0.382. Thus in this case the 

search pattern is: 

   
 

€ 

∴ I5 = 7.146 ≤ ro ≤ 7.584 mm   [40%] 
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€ 

ro  

€ 

f (ro) 

€ 

U(ro)  

€ 

p1P(ro) 

€ 

q(ro, p1)  
0.006 0.311017667 1846.153846 23.66863905 23.97965672 
0.009 1.58336267 2117.647059 0 1.58336267 

0.007146 0.736979435 1967.511013 1.055534262 1.792513697 
0.007854 1.037252855 2030.506722 0 1.037252855 
0.008292 1.237207471 2065.769806 0 1.237207471 
0.007584 0.919398083 2007.411329 0 0.919398083 
0.007416 0.848146762 1992.477163 0.056593079 0.904739842 

(e) The table above (used in the GS search) shows that the constraint will be active at the 
optimum (the objective function changes monotonically with 

€ 

ro ). In this case the constraint 
equation can be solved to find the optimal value of 

€ 

ro . 

   

€ 

1
ri

1
rihi

+
1
roho

" 

# 
$ 

% 

& 
' 
−1

= 2000 

   

€ 

∴
1
ro

=
ho
ri

1
2000

−
1
hi

$ 

% 
& 

' 

( 
) =

4000
0.005

1
2000

−
1

3000
$ 

% & 
' 

( ) 
 

   

€ 

∴ ro = 0.0075 m or 7.5 mm [20%] 

Assessor’s Comments: 

45 attempts, Average mark 10.7/20, Maximum 20, Minimum 1. 

The least popular question, only attempted by about half the candidates. There were some very 
good attempts, but a lot of partial answers. 

A litany of avoidable errors featured in answers. 
Few answers to (a) covered all the salient points. 

Some candidates implemented a barrier function rather than a penalty function, even though 
formulations for both are given on the 3M1 Data Sheet. Others failed to implement the penalty 
function correctly despite the standard formulation being given. Several candidates failed to square 
the term quantifying the extent of constraint violation. 

Many candidates reformulated the objective function and constraint, which was not required. 
Although they were given full credit if they still found the correct solution/interval, in all too many 
cases the reformulations were incorrect, resulting in the wrong problem being solved. 
Several candidates failed to recognise that their formulation did not result in a function with a 
minimum within the initial interval. Others did not implement the penalisation term correctly, 
penalizing solutions that satisfied the constraint as well as those that violated it. 

Poor attention to detail and poor presentation of Golden Section line search calculations made it 
hard to allocate partial credit to some incorrect solutions as it was not clear where things had gone 
wrong. 
Some answers to part (d) converged to an infeasible solution because the penalisation was too light 
for the candidate’s reformulated problem. This was not penalised in the mark scheme if the 
candidate recognised this and commented appropriately. 

In part (e) the correct solution was sometimes given but without adequate justification for full 
credit. Other answers implied no realisation that the problem was univariate – discussing the use of 
multivariate search methods. Others failed to consider the question of feasibility.  
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Q3 

(a) Total production costs in the three months are: 

   

€ 

(x2 +1000) + (y2 +1000) + (z2 +1000) 

 Noting that there is no hiring/firing at the end of month three, the hiring/firing costs are: 

   

€ 

10(x − y)2 +10(y − z)2  

 The storage costs for any excess production after each month are: 
   

€ 

20(x − 40) + 20(x + y −100) + 20(x + y + z −150) 

 Thus the total costs (to be minimized) are: 

€ 

f (x, y, z) = (x2 +1000) + (y2 +1000) + (z2 +1000) +10(x − y)2 +10(y − z)2

+20(x − 40) + 20(x + y −100) + 20(x + y + z −150)
 

€ 

∴ f (x, y, z) = x2 + y2 + z2 +10(x − y)2 +10(y − z)2 + 60x + 40y + 20z − 2800 

 Thus  

€ 

C = 2800  

 The contract to supply represents the constraints to be satisfied – total production must exceed 
the number of units needed to fulfil the contract at the end of each month. Thus the 
minimization is subject to: 

   

€ 

g1(x, y, z) = 40 − x ≤ 0  (G1) 

   

€ 

g2(x, y, z) =100 − x − y ≤ 0  (G2) 

   

€ 

g3(x, y, z) =150 − x − y − z ≤ 0  (G3) [20%] 

(b) Using Kuhn-Tucker multipliers the appropriate ‘Lagrangian’ is: 

   

€ 

L = f + µ1g1 + µ2g2 + µ3g3  

 and the Kuhn-Tucker optimality conditions are: 

   

€ 

∂L
∂x

= 2x + 20(x − y) + 60 −µ1 −µ2 −µ3 = 0 

   

€ 

∴
∂L
∂x

= 22x − 20y + 60 −µ1 −µ2 −µ3 = 0 (3.1) 

   

€ 

∂L
∂y

= 2y + 20(y − x) + 20(y − z) + 40 −µ2 −µ3 = 0  

   

€ 

∴
∂L
∂y

= 42y − 20x − 20z + 40 −µ2 −µ3 = 0  (3.2) 

   

€ 

∂L
∂ z

= 2z + 20(z − y) + 20 −µ3 = 0  

   

€ 

∴
∂L
∂ z

= 22z − 20y + 20 −µ3 = 0  (3.3) 

   

€ 

µ1g1 = µ1 40 − x( ) = 0 (3.4) 

   

€ 

µ2g2 = µ2 100 − x − y( ) = 0  (3.5) 

   

€ 

µ3g3 = µ3 150 − x − y − z( ) = 0 (3.6) [20%] 
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(c) If 

€ 

x = 40 , 

€ 

y = 60 and 

€ 

z = 50 , then equations (3.4) to (3.6) are satisfied. Equation (3.3) gives 

   

€ 

µ3 = 22z − 20y + 20 = 22 × 50 − 20 × 60 + 20 = −80 

 As the values of all the 

€ 

µi  must be 

€ 

≥ 0  at a minimum, this solution cannot represent the 
optimum.    [10%] 

(d) Given that at the optimum 

€ 

µ1 = 0 and 

€ 

µ2 > 0 , there are two possible cases to be investigated: 

 

€ 

µ1 = 0 , 

€ 

µ2 > 0, 

€ 

µ3 = 0  and 

€ 

µ1 = 0 , 

€ 

µ2 > 0, 

€ 

µ3 > 0  

 For 

€ 

µ1 = 0 , 

€ 

µ2 > 0, 

€ 

µ3 = 0: 

 Equation (3.1) gives 

€ 

22x − 20y + 60 = µ2  

 Equation (3.2) gives 

€ 

42y − 20x − 20z + 40 = µ2 

 Equation (3.3) gives 

€ 

22z − 20y + 20 = 0 

 And equation (3.5) gives 

€ 

x + y =100  

 These simultaneous equations can be solved using the appropriate functionality on the CUED-
approved calculator. The solution is 

   

€ 

x = 12045
236 = 51.038  

   

€ 

y = 11555
236 = 48.962 

   

€ 

z = 56595
1298 = 43.602 

   

€ 

µ2 = 24025
118 = 203.602  

 At first glance this appears to be a viable optimum as 

€ 

µ2 > 0  but careful inspection shows that 

€ 

x + y + z <150 , so constraint equation (G3) is violated for this solution.  [20%] 

 For 

€ 

µ1 = 0 , 

€ 

µ2 > 0, 

€ 

µ3 > 0: 

 Equation (3.1) gives 

€ 

22x − 20y + 60 = µ2 + µ3  

 Equation (3.2) gives 

€ 

42y − 20x − 20z + 40 = µ2 + µ3  

 Equation (3.3) gives 

€ 

22z − 20y + 20 = µ3 

 Equation (3.5) gives 

€ 

x + y =100  

 And equation (3.6) gives 

€ 

x + y + z =150  

 Again, these simultaneous equations can be solved using the appropriate functionality on the 
CUED-approved calculator. The solution is 

   

€ 

x = 1295
26 = 49.808 

   

€ 

y = 1305
26 = 50.192 

   

€ 

z = 50  

   

€ 

µ2 = 465
13 = 35.769 

   

€ 

µ3 = 1510
13 =116.154  

 This is a possible optimum: 

€ 

µ2 > 0 , 

€ 

µ3 > 0  and the three constraint equations are all satisfied. [20%] 
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 For this solution, given that x, y and z must in practice be integers 

€ 

x = y = z = 50 is the 
production schedule to implement. The values of 

€ 

µ2 and 

€ 

µ3  indicate that the objective 
function could be improved more readily by relaxing constraint 

€ 

g3 rather than 

€ 

g2. This is 
because for the problem as posed there is no firing/hiring penalty associated with the end of 
month three.   [10%] 

Assessor’s Comments: 

80 attempts, Average mark 13.3/20, Maximum 20, Minimum 4. 
A popular question attempted by 88% of candidates. 

The only consistent failing in part (a) was that the costs associated with storage of excess units were 
not always convincingly explained. 

Several candidates failed to mention the requirement that 

€ 

µigi = 0  for all inequality constraints in 
their answers to part (b). 

Some candidates incorrectly thought that an inequality constraint being active meant the 
corresponding KT multiplier was zero. 

Others thought that 

€ 

∇f = 0 was a sufficient condition for a minimum even though the problem was 
clearly constrained. 
Several attempts were disadvantaged by incorrectly formulated K-T optimality conditions despite 
the general form being given on the 3M1 Data Sheet. Solutions that were otherwise correct were not 
heavily penalised unless the resulting ‘optimal’ solution was clearly not optimal (e.g. due to 
constraints being violated). 
Many candidates incorrectly thought that second-order optimality conditions needed to be checked, 
failing to recall that for a problem with no equality constraints the first-order KT optimality 
conditions are sufficient. 

Most candidates did not take advantage of the simultaneous equation solving functionality on their 
CUED-approved calculator. Many attempts then floundered due to sloppy algebra. 

Several candidates only tested one of the two possible solution paths in part (d): 

€ 

µ3 = 0 or 

€ 

µ3 > 0 . 

 



Question 4 Discrete State Space Models

(a) Every element of P must be non-negative and the sum of the elements in each row
must be 1.

(b) The general expression to be satisfied is

⇡ = ⇡P

However, as the structure of the matrix means that the first m states are transient, then the
expression can be simplified to

⇡1 = 0; ⇡2 = ⇡2P22

The distribution does not depend on the initial state if the states associated with P22 are
recurrent.

(c) If P12 = 0 then there may be two distinct stationary distributions, one based on P11

the other on P22. The selection of the stationary distribution depends on the initial state in
this case.

(d) (i) The transition matrix is

P =

2

664

0.5 0.5 0.0 0.0
0.0 0.0 a 1� a

0.0 1.0 0.0 0.0
0.0 1.0 0.0 0.0

3

775

(d) (ii) The transition matrix is of the form considered in (b), so ⇡1 = 0 and the stationary
distribution ⇡2 = [ x1 x2 x3 ] satisfies

⇥
x1 x2 x3

⇤
2

4
0.0 a 1� a

1.0 0.0 0.0
1.0 0.0 0.0

3

5 =
⇥
x1 x2 x3

⇤

This yields

x2 + x3 = x1

ax1 = x2

(1� a)x1 = x3

leading to the following solution

⇡ =
⇥
0 1

2
a
2

1�a
2

⇤

(d)(iii) The equations associated with this problem are (the notation is qi is the expected
time to first visit state 4 given start in state i):

q1 = 0.5(1 + q1) + 0.5(1 + q2)

q2 = (1� a) + a(1 + q3) = 1 + aq3

q3 = (1 + q2)

It is clear that from the second and third equations that

q2 =
1 + a

1� a

The first equation gives q1 = 2 + q2, hence

q1 = 2 +
1 + a

1� a

=
3� a

1� a

We need q1 = 4. Thus this then yields a = 1/3.
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[10%]

[20%]

[20%]

[20%]

[15%]

[15%]
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Assessor’s Comments: 

87 attempts, Average mark 14.0/20, Maximum 19, Minimum 3. 

A very popular question attempted by all but 4 candidates. 

The question was done quite well by many but very well by few. 

Most candidates did not consider carefully enough the implications of the specific form of P given. 
They overlooked the significance of the statement that the elements of P11, P12 and P22 are non-zero 
(as distinct from non-negative), meaning that the first m states must be transient. 

In answering parts (b) and (c) many candidates stated equations without any discussion of their 
significance or meaning in the context of the question. 

Some candidates did not normalise the components of the stationary distribution found in part 
(d)(ii) or normalised it in such a way that the magnitude of the ‘vector’ was unity rather than the 
sum of its components being unity.  

In part (d)(iii) several candidates did not recognise that q4 must be zero and set up an additional 
equation linking it to q2. Whether this ended up affecting their answer depended on the solution 
path followed. 
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