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Q1 

(a)  

€ 

M =UΣVT  

 Recall that for a symmetric matrix S 

  

€ 

S =UΛUT  

 where the columns of U are the normalised eigenvectors of S, and 

€ 

Λ = diag(λ1,...,λn ). 

 

€ 

MMT  is symmetric. 

  

€ 

MMT =UΣVT UΣVT( )T = UΣVTVΣTUT =UΣΣTUT  

 Hence the columns of U are the normalised eigenvectors of 

€ 

MMT , and 

  

€ 

ΣΣT = Λ = diag(λ1,...,λn )  

 where 

€ 

λ1,...,λn  are the eigenvalues of 

€ 

MMT . 

  

€ 

∴ Σ = diag λ1,..., λn( )  

 

€ 

MTM is also symmetric. 

  

€ 

MTM = UΣVT( )TUΣVT = VΣTUTUΣVT = VΣTΣVT  

 Hence the columns of V are the normalised eigenvectors of 

€ 

MTM. 

 Note that non-zero eigenvalues of 

€ 

MMT  and 

€ 

MTM are the same. 

 Note that eigenvalues of 

€ 

MTM are non-negative, i.e. 

  

€ 

MTMx = λx ⇒ xTMTMx = λxTx  

  

€ 

∴ Mx 2
2

= λ x 2
2 

 

€ 

Mx 2
2  and 

€ 

x 2
2 are both > 0 by definition, therefore 

€ 

λ ≥ 0, which implies that Σ is real. [40%] 

(b) 

€ 

M1: invalid because 

€ 

Σ2 < 0. 

 

€ 

M2: valid, rank = 2. 

 

€ 

M3: valid, rank = 1. 

 

€ 

M4 : invalid, Σ is not diagonal. 

 

€ 

M5: invalid, U is not orthogonal.  [20%] 

(c)(i) 

€ 

κ2 =
9

1.2 ×10−9
= 7.5 ×109 

 This is large, so the solution will be sensitive to small perturbations in the right-hand side and 
round-off error.  [10%] 

(ii) The exact rank is 3, but since 

€ 

Σ3 is small, effective rank is 2. [5%] 
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(iii) Drop small singular values in 

€ 

M→ M* . 

  

€ 

M* =

1 0
0 1
0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

9 0
0 3
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
1 2 1 2 0
−1 2 1 2 0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

  

€ 

∴ U =

1 0
0 1
0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
; Σ =

9 0
0 3
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; VT =

1 2 1 2 0
−1 2 1 2 0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

  

€ 

M*−1 = VΣ−1UT ⇒ x = VΣ−1UT b  

  

€ 

∴ x =

1 2 −1 2
1 2 1 2
0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

1
9 0
0 1

3

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1 0 0
0 1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

7
15
6

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 

  

€ 

∴ x =

1 2 −1 2
1 2 1 2
0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

1
9 0
0 1

3

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

7
15
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

1 2 −1 2
1 2 1 2
0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

7
9
5

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

7
9 2

−
5
2

7
9 2

+
5
2

0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 This is the best fit that minimises 

€ 

x 2.  [25%] 

Assessor’s comments: 

37 attempts, Average mark 12.2/20, Maximum 20, Minimum 1. 
Not a popular question, attempted by well under half the candidates. Attempts ranged from the 
perfect to the derisory.  
Few attempts at part (a) were totally rigorous, although many were on the right lines.  
The most common error was the failure to spot that U for   

€ 

M5 in part (b) was not orthogonal.  
Most candidates who attempted (c)(iii) had a good idea of how to find x but quite a few made errors 
in inverting the matrices or in matrix multiplication. 
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Q2 

(a) Maximising the discharge capacity is equivalent to minimising p 
  

€ 

∴ Minimise p = b + 2hcscφ = f  

  

€ 

subject to hb + h2 cotφ = A  

  

€ 

and h ≥ 0; b ≥ 0; φ ≥ 0  [10%] 

(b)  

€ 

hb = A − h2 cotφ  

  

€ 

∴ b =
A
h
− hcotφ  

  

€ 

∴ Minimise p =
A
h
− hcotφ + 2hcscφ = f  [10%] 

(c) Newton’s Method: 

  

€ 

xk+1 = xk −H(xk )
−1∇f (xk )  

 Noting that 

€ 

d
dφ
cotφ = −csc2 φ  and 

€ 

d
dφ
cscφ = −cscφ cotφ  

 Here 

€ 

∇f =

∂ f
∂h
∂ f
∂φ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=
−
A
h2

− cotφ + 2cscφ

hcsc2 φ − 2hcscφ cotφ

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
 

  

€ 

H =

2A
h3

csc2 φ − 2cscφ cotφ

csc2 φ − 2cscφ cotφ 2h −csc2 φ cotφ + cscφ cot2 φ + csc3 φ( )

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 

 For 

€ 

x1 =
5
π 4
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

€ 

∇f (x1) =
−2.1716
−4.1421
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

  

€ 

H(x1) =
1.6 −0.82843

−0.82843 22.4264
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⇒ H(x1) = 35.196 

  

€ 

∴ x2 =
5
π 4
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ −

1
35.196

22.4264 0.82843
0.82843 1.6
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
−2.1716
−4.1421
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

6.4812
1.0248
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  [45%] 

(d) At the optimum 

€ 

∇f =
0
0
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥  

  

€ 

∴ −
A
h2

− cotφ + 2cscφ = 0  (2.1) 

 and 

€ 

hcsc2 φ − 2hcscφ cotφ = 0  (2.2) 
  

€ 

∴ cscφ = 2cotφ  

  

€ 

∴
1
sinφ

= 2 cosφ
sinφ
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€ 

∴ cosφ = 1
2 ⇒ φ =

π
3

=1.04720  

 Rearranging equation (2.1) 

  

€ 

h2 =
A

2cscφ − cotφ
 

  

€ 

∴ h2 =
100

2csc(π 3) − cot(π 3)
=

100
4
3
−
1
3

=
100
3

 

  

€ 

∴ h =
100
3

= 7.5984 m 

 At this point 

€ 

H =
0.4559 0
0 17.548

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 This is clearly (by inspection) positive definite, therefore this is indeed a minimum. 

 Newton’s Method seems to be converging on this point. If f was quadratic Newton’s Method 
would converge in one iteration. In this case f is not quadratic so convergence takes longer. [35%] 

Assessor’s comments: 
93 attempts, Average mark 12.0/20, Maximum 20, Minimum 6. 
A very popular question attempted by all but six candidates. There were many reasonable attempts 
but very few really good ones due to a litany of different errors. 
Many answers were undermined by poor differentiation skills, poor algebra, poor attention to detail, 
transcription errors and calculator errors. 
Many candidates overlooked the need for non-negativity bounds in part (a) despite the hint in part 
(b). 
Bewilderingly, more than one candidate failed to show the required result in part (b) and then 
proceeded to try to do the rest of the question using their erroneous version of f. 
It is apparent that several candidates were unfamiliar with the definitions of   

€ 

cscφ ,   

€ 

secφ  and   

€ 

cotφ .  

Some candidates did not appreciate that 
    

€ 

∂2f
∂h∂φ

 must equal 
    

€ 

∂2f
∂φ∂h

 and tried to apply Newton’s 

method with an asymmetric Hessian. 
Several candidates apparently did not know how to invert a 2×2 matrix. 
There were several suggestions of using Lagrange multipliers in part (d) rather than simply 
exploiting results from part (c) in applying the optimality criteria for an unconstrained minimum. 
Several candidates found the correct solution in part (d) but failed to check that the Hessian was 
positive definite there. 
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Q3 

(a) The identification of constraints 

€ 

g3 to 

€ 

g6 is very straightforward. 

 

€ 

g1:  

€ 

T =
2π f p
3sinα

R1
3 − R2

3( ) ≥ 15,000 Ncm  

 Substituting for p 

€ 

T =
2π f
3sinα

F
π R1

2 − R2
2( )

R1
3 − R2

3( ) ≥ 15,000 Ncm  

  

€ 

∴ T =
2 f
3sinα

F
R1
2 − R2

2( )
R1
3 − R2

3( ) ≥ 15,000 Ncm  

 For the given values of α, 

€ 

f  and 

€ 

F  

  

€ 

∴ T = 500
R1
3 − R2

3( )
R1
2 − R2

2( )
≥ 15,000 Ncm  

 Noting that 

€ 

R1
3 − R2

3 = (R1 − R2) R1
2 + R1R2 + R2

2( ) and that 

€ 

R1
2 − R2

2 = (R1 − R2)(R1 + R2)  

  

€ 

∴ T =
500

(R1 + R2)
R1
2 + R1R2 + R2

2( ) ≥ 15,000 Ncm  

  

€ 

∴ R1
2 + R1R2 + R2

2 ≥ 30(R1 + R2) (3.1) 

 This is a symmetric function in 

€ 

R1 and 

€ 

R2 . When equality holds, this line passes through 
(0,30) and (30,0). There is only one possible candidate in the figure (as shown below). For the 
inequality to be satisfied, we need to be to the right of this line. 

 

€ 

g2: 

€ 

p =
F

π R1
2 − R2

2( )
≤
15
4π

Ncm−2  

 For the given value of 

€ 

F  

  

€ 

∴ p =
750

π R1
2 − R2

2( )
≤
15
4π

Ncm−2  

  

€ 

∴ 200 ≤ R1
2 − R2

2  (3.2) 

 When equality holds, this defines a hyperbola passing through 

€ 

200,0( ) = (14.14,0) , resulting 
in the identification shown. For the inequality to be satisfied, we need to be to the right of this 
line. 

 Contours of V are lines where 

  

€ 

V = 1
3 πcotα R1

3 − R2
3( ) = const  

  

€ 

∴ R2
3 = R1

3 −
3V tanα

π
 

 In 

€ 

R1-

€ 

R2  space such lines are a bit like hyperbolae (e.g. asymptotically convergent on 

€ 

R2 = R1 for large 

€ 

R1) but have a steeper gradient at 

€ 

R2 = 0 , leading to the identification 
shown. 



3M1 Final Crib 2016 

 6 

   [40%] 

(b) The constraints render infeasible the areas shaded in the figure below: 

   
 Contours of V move to the left as V decreases, thus the optimum lies at the intersection of 

€ 

g1 
and 

€ 

g3. 

 On 

€ 

g3 

€ 

R2 = 1
2 R1, so, using the equation (3.1) version of 

€ 

g1: 

  

€ 

R1
2 + 1

2 R1
2 + 1

4 R1
2 = 30(R1 + 1

2 R1) 

  

€ 

∴ 7
4 R1

2 = 45R1 ⇒ R1 =
180
7

= 25.71cm  

  

€ 

∴ R2 = 1
2 R1 =

180
14

=12.86 cm  

  

€ 

∴ V = 1
3 πcotα R1

3 − R2
3( ) = 1

3 π 3
180
7

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3
−
180
14

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= 26.98 ×103 cm3  [25%] 
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€ 

R1

€ 
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€ 

g5

€ 
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€ 

g6
€ 
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€ 
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€ 
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€ 
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€ 

0

€ 
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€ 

40

€ 
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€ 
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(c) If 

€ 

g3 is eliminated, 

€ 

g7 is unnecessary because it is rendered redundant by 

€ 

g2 – any solution 
that violates 

€ 

g7 also violates 

€ 

g2 (but not vice versa). This is particularly obvious if 

€ 

g7 is 
plotted: 

   
 The optimum will now lie at the intersection of 

€ 

g1 and 

€ 

g2. [15%] 

(d) If 

€ 

T =
π f pR2
sinα

R1
2 − R2

2( ) , then substituting for p 

  

€ 

T =
π fR2
sinα

F
π R1

2 − R2
2( )

R1
2 − R2

2( ) =
fR2F
sinα

 

 For the given values of α, 

€ 

f  and 

€ 

F  

  

€ 

∴ T = 750R2 ≥ 15,000 Ncm ⇒ R2 ≥ 20 cm 

 This is a new version of constraint 

€ 

g1. The feasible space is now as shown below, with the 
optimum occurring at the intersection of 

€ 

g2 and the new 

€ 

g1. 

 Obviously 

€ 

R2 = 20 cm . Using the equation (3.2) version of 

€ 

g2: 

  

€ 

R1
2 = 200 + R2

2 = 200 + 202 ⇒ R1 = 600 = 24.49 cm  

  

€ 

∴ V = 1
3 πcotα R1

3 − R2
3( ) = 1

3 π 3 600
3
2 − 203[ ] =12.15 ×103 cm3  

   [20%] 

€ 

g1

€ 

g5

€ 

g4

€ 

g6€ 

g2
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Assessor’s comments: 

75 attempts, Average mark 11.6/20, Maximum 20, Minimum 1. 
A popular question attempted by 76% of candidates. 
The external examiner expressed concerns that this question would prove to be too easy. These 
concerns proved to be unfounded. Although there were a number of excellent attempts, the general 
standard of answers was disappointing, not least because many of the failings were in fundamental 
mathematical skills rather than optimization knowledge. 
Part (a), which was expected to be straightforward, proved surprisingly difficult for many 
candidates. Several lost marks by simply not identifying     

€ 

g4 ,     

€ 

g5 and     

€ 

g6  on the figure provided, 
despite this being explicitly required by the question. A surprising number of other candidates got 
    

€ 

g5 and     

€ 

g6  the wrong way round.  
Many candidates could not distinguish the equations of a circle and a hyperbola. More 
understandably, others had problems distinguishing the line representing     

€ 

g2  from that representing 
a contour of V. 
Several candidates overlooked the fact that T is a function of p, which is, in turn, a function of     

€ 

R1 
and     

€ 

R2 . 
Many candidates had problems visualising the feasible region, even when they had identified all the 
lines correctly, with consequent knock-on effects for later parts of the question. These were 
sometimes compounded by a failure to recognise where V would be minimised, even when the line 
representing the V contour was known. It was particularly common to identify the wrong side of the 
    

€ 

g1 constraint as feasible. 
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Q4 

(a) The transition matrix is 

  

€ 

P =

1− a a 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0.2 0 0.3 0.5
0 0 0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 By inspection, the stationary distribution must be 

  

€ 

π = 0 0 0 0 1[ ] 
 (unless     

€ 

a = 0, in which case   

€ 

π = 1 0 0 0 0[ ]) [15%] 

(b) Using the notation that 

€ 

qi  is the expected time to first visit State 5 given a start in State i, the 
equations associated with this are: 

  

€ 

q1 = (1− a)(1+ q1) + a(1+ q2)
q2 =1+ q3
q3 =1+ q4
q4 = 0.5 + 0.3(1+ q4 ) + 0.2(1+ q2)

 

 It is then possible to write: 

  

€ 

q2 = 2 + q4
0.7q4 =1+ 0.2q2

 

  

€ 

∴ 0.7q4 =1+ 0.2(2 + q4 ) ⇒ 0.5q4 =1.4  

  

€ 

∴ q4 = 2.8 and q2 = 4.8  

 Finally, solving for 

€ 

q1: 

  

€ 

q1 = (1− a)(1+ q1) + a(1+ q2)  

      

€ 

∴ aq1 =1+ aq2 

  
    

€ 

∴ q1 =
1
a + q2 =

1
a + 4.8  [30%] 

(c) The distribution after n steps is 

  

€ 

π (n ) = 1 0 0 0 0[ ] Pn  [10%] 

(d)(i) As a new item enters State 1 every step, the distribution is now changed to 

  

€ 

π (N ) = 1 0 0 0 0[ ] Pi
i=1

N

∑  

 This is a geometric progression but based on vectors. Using the standard proof for a GP 
yields: 



3M1 Final Crib 2016 

 10 

  

€ 

π (N ) − π (N )P = 1 0 0 0 0[ ] Pi
i=1

N

∑ − Pi+1
i=1

N

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 1 0 0 0 0[ ] P1 −PN +1( )  

  

€ 

∴ π (N ) (I −P) = 1 0 0 0 0[ ] P −PN +1( )  

  

€ 

∴ π (N ) = 1 0 0 0 0[ ] P −PN +1( )(I −P)−1 
 Hence 

€ 

π = 1 0 0 0 0[ ]  

  

€ 

A = PN +1 

  

€ 

B = I −P  [30%] 

(ii) “a” influences the probability of a single item entering the process. Thus the number of items 
stored in State 1 is determined by this. Again, this can be written as a geometric progression. 
As N becomes large the system will converge on a steady state, as once an item enters the 
process the process it is not influenced by “a”. [15%] 

Assessor’s comments: 

90 attempts, Average mark 12.1/20, Maximum 19, Minimum 6. 
A very popular question attempted by all but 9 candidates. Parts (a), (b) and (c) were generally done 
well, but part (d) baffled most candidates. 
All but one candidate found the correct transition matrix. Surprisingly, a large number of candidates 
could not identify the stationary distribution in part (a) by inspection. 
In part (b) some candidates erroneously thought that the expected time for an item to first enter 
State 5 should be an integer. Most candidates set up the equations governing the waiting times 
correctly but many then made small slips in solving them. 
In part (d) most candidates missed the fact that if the process had been running for N steps, N items 
would have entered the process – one each step – and instead sought futilely to cast their answer to 
part (c) in the form required. 
Few answers to (d)(ii) used the mark scheme to inform how much discussion was expected. 


