
Question 1

(a) kuk
1

= 7, kuk
2

=

p
19, kuk1 = 4

kvk
1

= 21, kvk
2

=

p
185, kvk1 = 10

kwk same as for v
[10%]

(b) (i) kAk
1

= maxj
P

i |aij | = 12

kAk
2

=

q
�

max

(ATA) = 12 – obvious given the form of A

kAk1 = maxi
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j |aij | = 12
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= 15 + 10

p
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) kBk
2

⇡ 5.398

kBk1 = maxi
P

j |bij | = 5

[20%]

(ii) Use the inequality kABk  kAkkBk
and the triangle inequality kA+Bk  kAk+ kBk
and noting that kDkp < 7:

kC +Dkp < kCkp + kDkp = 12

kCDkp < kCkpkDkp = 35

[10%]

(c) (i) The condition number in the 2-norm, 

2

, is the ratio of the largest singular value

over the smallest singular value. The diagonal matrix in a SVD contains the singular

values. Therefore 

2

= 1.030⇥ 10

9

/2.606⇥ 10

�9 ⇡ 3.95⇥ 10

17

.

This is an extremely large condition number, and will likely lead to unstable com-

putations.

[15%]

(ii) Introducing an error �b, we have the perturbed system A(p + �p) = b + �b. Since

Ap = b (exact problem), we have A�p = �b =) �p = A�1

�b.
Taking norms:

kApk = kbk  kAkkpk
kA�1

�bk = k�pk  kA�1kk�bk

From the first line, we have

1

kpk  kAk
kbk

1
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and from the second line, we have

k�pk  kA�1kk�bk

Combining these two inequalities:

k�pk
kpk  kAkkA�1kk�bkkbk

[30%]

(iii) Use a change of variable, i.e. use x

?
= x � 800 in place of x. This will reduce the

condition number dramatically.

[15%]

2
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(iii) Drop small singular values in 

€ 

M→ M* . 

   

 This is the best fit that minimises 

€ 

x 2.  [25%] 

Assessor’s Comments: 

86 attempts, Average mark 14.3/20, Maximum 20, Minimum 2. 

A popular question, attempted by 89.6% of candidates. Attempts ranged from the perfect to the 
derisory, but, as indicated by the high average mark, there were many very good attempts. 

A surprisingly large number of candidates could not spot the 2-norm of the diagonal matrix A in 
part (b)(i) by inspection. 

In part (c)(i) some candidates recognized that the matrix was ill-conditioned but did not (or could 
not?) explain what this meant in practical terms. 

Several solutions to part (c)(ii) were undermined by lack of clarity/explanation in the proof 
presented. 

In part (c)(iii) very few candidates spotted the significance of the values of   

€ 

xi  all being close to 800 
and what this made possible. Most answers discussed (much) more elaborate reformulations than 
the one expected. 
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Q2 

(a) The total MW-hours generated by CCGT     

€ 

= E( x1) 

 The total MW-hours generated by diesel     

€ 

= E( x1 + x2 ) − E( x1)  

 The total MW-hours purchased from the grid     

€ 

= E(Pmax ) − E( x1 + x2 )  

 Total cost per annum = capital cost + operational cost + cost of power bought 

    

€ 

∴ f ( x1, x2 ) = c1x1 + c2x2 + r1E( x1) + r2 E(x1 + x2 ) − E(x1)[ ] + e E(Pmax ) − E( x1 + x2 )[ ]  

 Constraints are     

€ 

x1 ≥ 0  

      

€ 

x2 ≥ 0  

      

€ 

x1 + x2 ≤ Pmax  [15%] 

(b)  
(i) The first-order necessary condition is 

  
    

€ 

∂ f
∂x1

=
∂ f
∂x2

= 0  

  
    

€ 

∴
∂ f
∂x1

= c1 + r1E'( x1) + r2E'( x1 + x2 ) − r2E'( x1) − eE'(x1 + x2 ) = 0  

 where 
    

€ 

E'( x) =
dE(x)

dx
 

  
    

€ 

∴
∂ f
∂x1

= c1 + (r1 − r2)E'( x1) + (r2 − e)E'( x1 + x2 ) = 0  (2.1) 

  
    

€ 

∴
∂ f
∂x2

= c2 + r2E'( x1 + x2 ) − eE'(x1 + x2 ) = 0 

  
    

€ 

∴
∂ f
∂x2

= c2 + (r2 − e)E'(x1 + x2 ) = 0  (2.2) 

(ii) These equations will govern a minimum if the Hessian H is positive definite. 

  
    

€ 

∂2f
∂x1

2 = (r1 − r2) E"( x1) + (r2 − e)E"(x1 + x2 ) 

 where 
    

€ 

E"( x) =
d 2E(x)

dx2  

  
    

€ 

∂2f
∂x1∂x2

= (r2 − e)E"(x1 + x2 )  

  
    

€ 

∂2f
∂x2

2 = (r2 − e)E"(x1 + x2 )  

 Let     

€ 

A = (r1 − r2) E"( x1)  and     

€ 

B = (r2 − e)E"(x1 + x2 ) . The Hessian can then be written as 
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€ 

H =
A + B B

B B

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 H is positive definite if     

€ 

A + B > 0 

 and if     

€ 

det(H ) > 0 

      

€ 

∴ ( A + B)B − B2 > 0 ⇒ AB > 0  

     

€ 

A + B > 0 and     

€ 

AB > 0  imply that     

€ 

A > 0  and     

€ 

B > 0 

      

€ 

(r1 − r2) E"( x1) > 0  and     

€ 

(r2 − e)E"(x1 + x2 ) > 0  [45%] 

(c) Subtracting equation (2.2) from equation (2.1) 

      

€ 

c1 − c2 + (r1 − r2)E'( x1) = 0  

  
    

€ 

∴ E'( x1) =
c1 − c2
r2 − r1

 

 For the specified form of     

€ 

E( x)  

  
    

€ 

E'( x) =
πE0

2Pmax
cos

πx
2Pmax

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

  
    

€ 

∴
πE0

2Pmax
cos

πx1
2Pmax

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

c1 − c2
r2 − r1

 

  
    

€ 

∴
π × 3.942 ×106

2 × 900
cos

πx1
2 × 900
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

90000 − 45000
105 − 75

 

  
    

€ 

∴ 6880cos
πx1

1800
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =1500 ⇒ cos

πx1
1800
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0.2180  

  
    

€ 

∴
πx1

1800
= cos−1(0.2180) =1.351 ⇒ x1 = 774.1MW 

 Rearranging equation (2.2) 

  
    

€ 

E'( x1 + x2 ) =
c2

e − r2
 

  
    

€ 

∴
πE0

2Pmax
cos

π(x1 + x2 )
2Pmax

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

c2
e − r2

 

  
    

€ 

∴ 6880cos
π(x1 + x2 )

1800
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

45000
150 −105

=1000 ⇒ cos
π(x1 + x2 )

1800
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0.1453 

  
    

€ 

∴
π( x1 + x2 )

1800
= cos−1(0.1453) =1.425 ⇒ x1 + x2 = 816.4 MW ⇒ x2 = 42.3 MW 

 The second-order conditions must be checked 

  
    

€ 

E"( x) = −
π 2E0

4Pmax
2 sin

πx
2Pmax

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  
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€ 

∴ A = (r1 − r2) E"( x1) = −(75 −105)
π 2 × 3.942 ×106

4 × 9002 sin
π × 774.1
2× 900

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

      

€ 

∴ A = 351.6 > 0 ⇒ OK  

  
    

€ 

∴ B = (r2 − e)E"(x1 + x2 ) = −(105 −150)
π 2 × 3.942 ×106

4 × 9002 sin
π × 816.4
2× 900

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

      

€ 

∴ B = 534.6 > 0 ⇒ OK  

 So, the solution is a minimum. 
 The constraints must also be checked: 

      

€ 

x1 = 774.1MW ≥ 0 ⇒ OK 

      

€ 

x2 = 42.3 MW ≥ 0 ⇒ OK 

      

€ 

x1 + x2 = 816.4 MW ≤ Pmax = 900 MW ⇒ OK 

 The constraints are all inactive, so the solution is indeed an interior point. 

 Thus, the optimal balance of generating capacity is     

€ 

x1 = 774.1MW ,     

€ 

x2 = 42.3 MW . [40%] 

Assessor’s Comments: 
88 attempts, Average mark 14.4/20, Maximum 19, Minimum 5. 

The most popular question, attempted by 91.7% of candidates, and by a narrow margin the best 
done. There were many very good attempts, though no perfect ones. 

The most common failings were: 
1. Sloppiness/lack of thought in defining the constraints in part (a); 

2. The use of incorrect second-order conditions in part (b)(ii); 
3. Lack of clarity in arguments/explanations in part (b)(ii); 

4. Overly complicated attempts to part (c) that almost inevitably went astray; 
5. Failure to check the second-order conditions and/or the constraints, having found the optimal 

balance of generating capacity in part (c). 
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Q3 

(a) Fig. 2 as drawn does not represent a spanning tree, because node 3 is disconnected from the 
rest of the network and the arcs in the basis form a loop. 

 To form a feasible basic solution (spanning tree) node 3 must be connected to another node 
(say node 2) by a zero flow arc in the basis, and one of the arcs with flow at its upper limit 
must be made non-basic in order to break the loop. 

 A possible feasible basis is therefore: 

   [15%] 

(b) Taking     

€ 

y1 = 0 , the remaining simplex multipliers for the basis above are: 

   
 The corresponding reduced costs for the non-basic variables are: 

 

    

€ 

LB : c 13 = c13 − y1 + y3 = 5 − 0 + (−11.5) = −6.5
LB : c 15 = c15 − y1 + y5 =12 − 0 + (−11) =1
LB : c 24 = c24 − y2 + y4 = 2 − (−6) + (−4.5) = 3.5
LB : c 35 = c35 − y3 + y5 = 3 − (−11.5) + (−11) = 3.5
LB : c 43 = c43 − y4 + y3 = 7 − (−4.5) + (−11.5) = 0
UB : c 45 = c45 − y4 + y5 = 4.5 − (−4.5) + (−11) = −2

 

 As arc 1–3, which is at its lower bound, has a negative reduced cost, this cannot be the 
optimal allocation.  [30%] 



3M1 Final Crib 2017 

 7 

(c) Taking     

€ 

y1 = 0  again, the remaining simplex multipliers for the Fig. 3 basis are: 

   
 The corresponding reduced costs for the non-basic variables are: 

 

    

€ 

LB : c 15 = c15 − y1 + y5 =12 − 0 + (−8) = 4
LB : c 23 = c23 − y2 + y3 = 5.5 − (−6) + (−5) = 6.5
LB : c 24 = c24 − y2 + y4 = 2 − (−6) + (−4.5) = 3.5
LB : c 25 = c25 − y2 + y5 = 5 − (−6) + (−8) = 3
LB : c 43 = c43 − y4 + y3 = 7 − (−4.5) + (−5) = 6.5
UB : c 45 = c45 − y4 + y5 = 4.5 − (−4.5) + (−8) =1

 

 The lower bound arcs all have positive reduced costs, but the upper bound arc 4–5 also has a 
positive reduced cost, so the network cost can be decreased by reducing the flow on it: 

   
 θ is limited to 1000 by the capacity of arc 3–5. Arcs 1–4 and 4–5 now have flow below their 

capacity and therefore must be in the basis, as must arc 1–3. Therefore arc 3–5 drops out of 
the basis. The new basis and associated simplex multipliers are then: 
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 The corresponding reduced costs for the non-basic variables are: 

 

    

€ 

LB : c 15 = c15 − y1 + y5 =12 − 0 + (−9) = 3
LB : c 23 = c23 − y2 + y3 = 5.5 − (−6) + (−5) = 6.5
LB : c 24 = c24 − y2 + y4 = 2 − (−6) + (−4.5) = 3.5
LB : c 25 = c25 − y2 + y5 = 5 − (−6) + (−9) = 2
LB : c 43 = c43 − y4 + y3 = 7 − (−4.5) + (−5) = 6.5
UB : c 35 = c35 − y3 + y5 = 3 − (−5) + (−9) = −1

 

 The lower bound arcs all have positive reduced costs, and the one upper bound arc has a 
negative reduced cost, so this is the optimal flow allocation. [55%] 

Assessor’s Comments: 
83 attempts, Average mark 13.4/20, Maximum 20, Minimum 1. 
A fairly straightforward network flow optimization problem, but the first time this topic has 
featured in a 3M1 exam. 

There were many very good answers but the average mark was dragged down by a tail of attempts 
from candidates who had clearly not anticipated a question on this topic coming up. 
In part (a), many recognized that the basis proposed was not a spanning tree, but failed explicitly to 
mention the need to break the loop.  
Many candidates suggested a different initial set of flows, rather than just modifying the basis for 
the given set of flows. This different reading of the question was not penalized.  
Some candidates confused the standard method for finding an initial feasible flow solution (by 
defining an artificial problem with additional arcs) and the task of finding a feasible basis for a 
defined (feasible) flow solution. 

In part (b), several answers were undermined by the candidate’s failure to specify exactly what 
basis was being used. Some candidates used incorrect formulae for the simplex multipliers and 
reduced costs despite these being given in the question. Some candidates attempted to analyse a 
basis including a loop, resulting in inconsistent multiplier values, and then (incorrectly) took this as 
evidence that the solution was not optimal. 
The most common mistakes in part (c) arose from lack of understanding of the rules determining 
whether flows are part of the basis and from incorrect interpretation of reduced cost values. 
 



4.

(a) Set p(x, t) = X(x)T (t). Substituting in yields the following pair of di↵erential equations:

@T (t)

@t

+ ↵k

2
T (t) = 0

@

2
X(x)

@x

2
+ k

2
X(x) = 0

The solutions are then:

T (t) / exp(�↵k

2
t)

X(x) / exp(ikx)

Thus, the general solution is

p(x, t) = a(k) exp(�↵k

2
t) exp(ikx)

This is satisfied by any k, so the general solution is

p(x, t) =

Z 1

�1
a(k) exp(�↵k

2
t) exp(ikx)dk

[25%]

(b)(i) [derivation in lecture notes]
Need to satisfy the initial condition at t = 0, hence

�(x) = p(x, 0) =

Z 1

�1
a(k) exp(ikx)dk =

Z 1

�1
a(�k̃) exp(�ik̃x)dk̃

By noting that this is the Fourier Transform F() of a(�k̃)

a(�k̃) = F�1 {�(x)} =
1

2⇡

Z 1

�1
�(x) exp(ik̃x)dx =

1

2⇡

Thus, the final solution is

p(x, t) =
1

2⇡

Z 1

�1
exp(�↵k

2
t) exp(ikx)dk

Using the equality given in the question, this can be simplified to the form:

p(x, t) =
1p
4↵⇡t

exp

✓
� x

2

4↵t

◆

This is a Gaussian distribution with zero mean and variance

b(t) = 2↵t

[35%]

(b)(ii) As discussed in the lecture notes, over time the variance of the distribution of particles
increases linearly. Examples of possible paths for a single particle are:

[15%]
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(c) We are interested in the correlation of the particles at time t1 and time t2. The denomi-
nator terms are known

E{(x1 � µ1)
2} = 2↵t1

E{(x2 � µ2)
2} = 2↵t2

For the numerator term, we need to rely on the fact that Brownian motion is a Markov process.
Thus, the position at time t2, x2 can be written as

x2 = x1 + (x2 � x1)

The distribution for (x2 � x1) will be zero mean and independent of x1. Thus, noting that
µ1 = µ2 = 0,

E{(x1 � µ1)(x2 � µ2)} = E{x1x2} = E{x1[x1 + (x2 � x1)]} = E{x1x1} = 2↵t1

Hence

Corr(x1, x2) =
2↵t1

2↵
p
t1t2

=

r
t1

t2

[25%]
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As N becomes large the system will converge on a steady state, as once an item enters the 
process the process it is not influenced by “a”. [15%] 

 

Assessor’s Comments: 

32 attempts, Average mark 9.2/20, Maximum 20, Minimum 1. 

The least popular question by some margin and the least well attempted. Clearly many candidates 
were not expecting a question on Brownian motion and were ill prepared to attempt it. The average 
mark was dragged down by the high proportion of desultory attempts, done seemingly out of 
desperation.  

There were a handful of very good answers from candidates who had evidently revised thoroughly 
rather than tactically. 

Among those who made serious attempts at answering the question, lack of detail and careful 
justification in the various proofs required was the most common cause of lost marks.  

Some answers lost marks due to the failure of the candidate to recognize that the problem specified 
was one-dimensional spatially. 

 


