$3 M 1$

1. a) $A_{i j}=\bar{A}_{j i}=A_{i j} \quad \therefore \quad A$ is symmotric and
3) i

$$
\begin{aligned}
Q^{\mu} \underline{Q}=I \Rightarrow \operatorname{det}\left(\underline{Q}^{\mu} \underline{Q}\right) & =\operatorname{det}\left(\underline{Q}^{4}\right) \operatorname{ded}(\underline{Q}) \\
& =\frac{\operatorname{det}(\underline{Q}) \operatorname{det}(\underline{Q})=1}{\underline{Q})}
\end{aligned}
$$

$\therefore|\operatorname{det}(Q)|=1$ (moduks L. det can be camplax)
ii $\|\underline{Q} \underline{x}\|_{2}^{2}=\underline{x}^{H} \underline{Q}^{H} \underline{Q} \underline{\underline{x}} \underline{\underline{x}}=\underline{x}^{\prime \prime} \underline{x}=\|\underline{x}\|_{2}^{2}$
ivi Approach 1

$$
\begin{equation*}
\|\stackrel{A}{=}\|_{2}=\max _{x \neq 0} \frac{\|A x\|_{2}}{\|\underline{x}\|_{2}} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
&\|Q A\|_{2}=\max \frac{\| Q(A x) / /_{2}}{\|\underline{x}\|_{2}}=\max \frac{\|A \underline{A}\|_{2}}{\| x /_{2}} \\
& \text { (using (1))) }
\end{aligned}
$$

$$
\begin{aligned}
&\|A \underline{Q}\|_{2}=\max \frac{\left\|A \underline{A} \underline{E_{2}}\right\|_{2}}{\|x\|_{2}}=\max \frac{\|A \underline{Q} x\|_{2}}{\|Q x\|_{2}} \\
&=\max \frac{\|A y\|_{2}}{\|y\|_{2}} \\
& \Rightarrow\|Q A\|_{2}=\|A \underline{Q}\|_{2}=\|A\|_{2}
\end{aligned}
$$

Approech 2 (using detin of 2 -ngrm in terms

$$
\begin{aligned}
& \text { - }\|\underline{=} \underline{\underline{Q}}\|_{2}^{2}=\lambda_{\max }\left((\underline{Q} A)^{H} \underline{\underline{Q}} A\right) \\
& =\operatorname{\lambda ina}\left(A^{H} Q^{H} \underline{=} \underline{\underline{A}}\right)=\lambda \max \left(A^{H} A\right)=\|A\|_{2}^{2} \\
& \text { - }\|\underline{A} \underline{Q}\|^{2}=\lambda_{\max }\left((A \underline{Q})^{H}(A \underline{Q})\right. \\
& =\lambda_{\max }\left(A Q(A Q)^{*}\right)\left[\begin{array}{l}
\text { since } \leq D \text { and } D \subseteq \\
\text { have same eigen valuad }
\end{array}\right] \\
& =\lambda_{\max }\left(A A^{4}\right) \\
& =\lambda_{\max }\left(A^{H} A\right)=\|A\|_{2}^{2}
\end{aligned}
$$

ier No. Counter example:

Li j $\underline{x}^{4} \underline{x}=\|\underline{x}\|_{2}^{2} \rightarrow$ real

$$
\begin{array}{r}
\left.\underline{x}^{H} M \underline{x}=\left(\underline{x}^{H} M \underline{M}\right)^{H}=x^{H} M^{H} \frac{x}{(\sin x}=\frac{x^{H} M x}{M}=1 M^{H}\right) \\
\longrightarrow \text { na }
\end{array}
$$

$\therefore R(\underline{M}, \underline{n})$ most be real.
ii) $R(\underline{M}, c \underline{x})=\frac{\left(\bar{c} \underline{x}^{H}\right) \underline{M} c \underline{x}}{\left(\bar{c} \underline{x}^{H}\right)(c \underline{x})}=\frac{|c|^{2}}{\mid c 1^{2}} \frac{x^{H} \underline{M} \underline{x}}{\underline{x}^{H} \underline{\underline{x}}}$

$$
=R(\underline{\underline{M}}, \underline{2})
$$

iii Eigenvector of Hermitian matrix are orthayonel, eigenvalues are real.

$$
\underline{x}=\sum_{i} \alpha_{i} \underline{u}_{i} \text { ith eigenvector }
$$

$$
\begin{aligned}
R(\underline{M}, \underline{\underline{n}}) & =\frac{\left(\sum_{i} \bar{\alpha}_{i} \underline{u}_{i}^{H}\right) \underline{M}\left(\sum_{j} \alpha_{j} \underline{u}_{j}\right)}{\left(\sum_{i} \bar{\alpha}_{i} \underline{u}_{i}^{H}\right)\left(\sum_{j} \alpha_{j} \underline{u}_{j}\right)} \\
& =\frac{\sum_{i}\left|\alpha_{i}\right|^{2} \lambda_{i}}{\sum_{i}\left|\alpha_{i}\right|^{2}}
\end{aligned}
$$

This is a weighted average of the eigenvalues, hence maximin is $\lambda_{\text {max }}$ and ninimen is Xiamen
iv $R\left(\underline{M}, \frac{2}{T}\right)$ is maximin when $2 x$ is the eigenvector assocital with timex.

3M1 Mathematical Methods, 2019

2. Markov Chains and Stationary Distributions

(a) Transition matrix is:

$$
\mathbf{P}=\left[\begin{array}{ccc}
0.75 & 0.25 & 0.0 \\
0.25 & 0.0 & 0.75 \\
b & 0.75 & a
\end{array}\right]
$$

Constraints on a and b are:

$$
\begin{array}{r}
a \geq 0 ; \quad b \geq 0 \\
a+b+0.75=1.0
\end{array}
$$

(b) For a stationary distribution

$$
\pi \mathrm{P}=\pi
$$

By inspection for the stationary distribution to be all equal, as shown, then each column of \mathbf{P} must sum to 1.0. Thus

$$
a=0.25 ; \quad b=0.0
$$

(c)(i) As $\pi_{j}=\pi_{k}$ for all three states, it is sufficient to show that the \mathbf{P} is symmetric. For the values of a and b in Part (b) this is true. Hence the process is in detailed balance.
(c)(ii) From lecture notes

$$
(\boldsymbol{\pi} \mathbf{P})_{k}=\sum_{j} \pi_{j} p_{j, k}=\sum_{j} \pi_{k} p_{k, j}=\pi_{k}
$$

(d)(i) Assume that the transition is from state j to $k(k \neq j)$. Using the proposal function the probability of this transition is $r_{j, k}$ However, this point is only kept with probability α given in the question. Thus the equivalent transition is

$$
\bar{r}_{j, k}=\alpha r_{j, k}=r_{j, k} \min \left\{\frac{\pi_{k} r_{k, j}}{\pi_{j} r_{j, k}}, 1\right\}
$$

as required. For the self loop there is the sum to one constraint. Yielding the expression required in the question.
(d)(ii) From the lecture notes

$$
\begin{aligned}
\pi_{j} \bar{r}_{j, k} & =\pi_{j} r_{j, k} \min \left\{\frac{\pi_{k} r_{k, j}}{\pi_{j} r_{j, k}}, 1\right\} \\
& =\min \left\{\pi_{k} r_{k, j}, \pi_{j} r_{j, k}\right\} \\
& =\pi_{k} r_{k, j} \min \left\{1, \frac{\pi_{j} r_{j, k}}{\pi_{k} r_{k, j}}\right\}=\pi_{k} \bar{r}_{k, j}
\end{aligned}
$$

Hence the process is in detailed balance, so from Part (c) $\boldsymbol{\pi}$ is a stationary distribution of this process.
(d)(iii) No. Any symmetric distribution will have the stationary distribution from Part (b). The exact process will depend on the proposal process R.
3. Optimisation
(a) A set of nested ellipses and a line
(b) The penalised problem is to minimize

$$
P=x^{2}+2 y^{2}+\mu(x+2 y-3)^{2}
$$

Partial derivatives of P with respect to x and y are

$$
\begin{aligned}
& \frac{\partial P}{\partial x}=2 x+2 \mu(x+2 y-3) \\
& \frac{\partial P}{\partial y}=4 y+4 \mu(x+2 y-3)
\end{aligned}
$$

Setting these to zero gives

$$
\begin{aligned}
& 3 \mu=(1+\mu) x+2 \mu y \\
& 3 \mu=\mu x+(1+2 \mu) y
\end{aligned}
$$

Solving by variable substitution,

$$
\begin{aligned}
& (1+\mu)(3 \mu-(1+2 \mu) y)+2 \mu^{2} y=3 \mu^{2} \\
y & =\frac{3 \mu}{(1+\mu)(1+2 \mu)-2 \mu^{2}}=\frac{3 \mu}{1+3 \mu} \\
x & =\frac{1}{\mu}\left(3 \mu-(1+2 \mu) \frac{3 \mu}{1+3 \mu}\right)=\frac{3 \mu}{1+3 \mu}
\end{aligned}
$$

The locus of the penalised solution is a line segment ending at $(x, y)=(1,1)$ with the solution tending to the end as $\mu \rightarrow \infty$.
(c) Introducting the Lagrange multiplier, the minimisation problem is now

$$
L=x^{2}+2 y^{2}+\lambda(x+2 y-3)
$$

The equations to be solved are

$$
\begin{aligned}
\frac{\partial L}{\partial x} & =2 x+\lambda \\
\frac{\partial L}{\partial y} & =4 y+2 \lambda \\
3 & =x+2 y
\end{aligned}
$$

which have the solution $x=y=1, \lambda=-2$. The value of lambda is ratio between the gradient of the original function and the gradient of the constraint at the solution.

