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4A12 Turbulence 2018

4@) V (volume) = 30x30x10=9000m?>. p (density) = 1.2 kg/m>. Power per kg = turbulent kinetic
energy dissipation per kg, = Power needed = p*V*u¥L = 2.7kW.

(b} The typical diffusivity in this turbulent flow will be of order D=0.1*u*L, i.e. 0.025 m¥s. At time
¢, a diffusion process advances over a distance 5~(D*t)"?, so {~8%D, hence if 5=10m, the time
needed for the smoke to reach the ceiling will be of order 4000 s (66 min). This numerical
estimate can be improved by starting from the long-time diffusion result of Taylor, which gives
that §°=2u?T_*t, with T_ the Lagrangian integral timescale. We may assume that T.=L/u. With
this approach, the time needed becomes 200s, which is more realistic. (Examiners comment:
both estimates are acceptable; but full marks only to those who used Taylor’s resuit.) In real life,
the smoke reaches the detector through buoyant convection as well as turbulent diffusion,
which reduces the detection time significantly. Note also that the assumpticon of a long-time
turbulent diffusivity is a good one, since we are dealing with lengthscales of the diffusion
process >> L

(c) In homogeneous isotropic decaying turbulence, dk/dt=-¢, with k=3/2u? and s=u¥/L.. If we put
a=u/ug (uo being the initial turbulent intensity), To=L/uo (the initial integral timescale), and t=t/T,,
the governing equation becomes da?/dt=-2/3a* The solution is u/ue=[1+t/(3To)] *. So the
turbulent intensity will fall to 10% of its initial value at 3T, i.e. at 3s.

2§a) Self-similar implies a state where the mean flow and the turbulence reach an equilibrium,
where the turbulence adapts to the small changes of the mean flow and all radial profiles (e.g.
of the mean velocities and the Reynolds stresses) assume the same shape when normalised by
the centreline values. These centreline values change with downstream distance. The flow is
characterised by a single lengthscale {e.g. of the order of the jet width) and a single velocity
scale (the mean centreline velocity). The Reynolds stresses at the centreline are constant
factors of the mean velocity (squared).

(b) At any distance x from the origin, the jet axial velocity profile is U{r)=Uc(x}F(n), n=r/8(x), F(n)
is the self-similar function describing the profile, 5(x) is the characteristic width, and U¢(x) is the
characteristic velocity at the centreline. The momentum flow rate M is conserved, hence

M= f T U 2nrdr = 20U, (VLIS () f " F2()dn
0 ]

is constant for all x. The integral is not a function of x, so since in the axisymmetric jet 5{x)~x,
the characteristic velocity Uc(x)~x"".

(c) Similarly for the scalar, if it obeys a self-similar distribution, it must obey c(r)=C(x)G(n).

Since the scalar is conserved across the jet, its mass flow rate must stay constant. Hence, the
integral below must be independent of x.

= f " U)elr)yzardr = 200, ()€ ) f "G m)dn
1] Q



which implies that the characteristic scalar at the centreline C(x)~x"". The reduction in the value
of the scalar at the centreline implies mixing with the ambient fluid. This comes about due to the
entrainment (the pressure in the jet drops slightly, hence the ambient higher pressure “pushes”
fluid radially into the jet). Alternatively, entrainment can be understood as the effect of the
turbulence at the edges of the jet to “eat” into the irrotational ambient fluid. Once ambient fluid
has been entrained, it mixes with the jet fluid through the action of the intense turbulence in the
jet and the scalar concentration decreases. The radial profiles of the mean velocity components
and the Reynolds stresses are shown below.
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4A12 Assessor’'s Comments

Question 1: Turbulent Mixing

A popular, standard question, answered very well in the most part. There was one
difficult part on the smoke dispersion that was answered well by only very few students;
the fact that Taylor's dispersion was not asked regularly in the past may have
contributed to this.

Question 2: Self-similarity applied to turbulent jet

A significant part of this question was straight out of the lecture notes, but it was still not
done very well. The students intuition on where is the turbulence produced across the jet
was broadly correct.

Question 3: Vortex Stretching
Nearly all students attempted this question and most answered it well. Some students
had problems with the physical interpretation of part (e).

Question 4: Ekman Pumping
All students attempted this question and the overall performance was very good. Most
mistakes occurred in parts d(ii) and d(iii), where the spin-down time was required.



