ENGINEERING TRIPOS PARTIIB 2013
MODULE 4A9 — MOLECULAR THERMODYNAMICS

SOLUTIONS

1. (@) (i) In the freestream the distribution function will be Maxwellian if it is
written in terms of the peculiar velocity components, C; = ¢=V, C; = ¢;, C; = cs.
Technically, the Navier-Stokes equation is valid although, as the viscous shear stress is zero,
it actually takes the form of the Euler equation. [1]

(ii) A point in the BL where the flow speed is 0.1¥ will be many mean free-paths from the
plate surface and the flow there will be in the continuum regime. The molecular velocity
distribution function will be perturbed from Maxwellian in order to generate the wallwards
flux of streamwise momentum which is described macroscopically as the viscous shear
stress. The perturbation will be modest, however, and the Navier-Stokes equation will be

valid. [21
(iii) At a point on the plate surface the molecular velocity distribution function will be far
from Maxwellian. The mean wall-normal velocity will be zero (¢,=0) so C; = ca.
Molecules coming from the bulk of the gas (C> < 0) will have a distribution similar to those
in (ii) while molecules emitted from the plate (C, > 0) will have a half-Maxwellian
distribution because the reflection is diffuse. The distribution function will thus be
discontinuous at C; = 0. The Navier-Stokes equations will not be valid. 2]
{b) (i) For the x| flux of molecular energy, we set 0 = m(c{" + c% + c_%)/ 2, ¢;=c¢) and
use the given expression for f to obtain,
SR 2,.2..2 2, 2,2
. m(Cl +C2+C3) n (CI—V) "!'Cz +C3
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We now introduce the given transformation in the forms,
= V+ WI‘\JZRT, CZ=W2V2RT, CJ =W3'\J2 T .
dcl = dW[‘VZRT 5 dCZ = d'VVzVZRT, dC3 = dW3‘\12RT 5
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Substituting into the integral gives,

N V2 +2Vwm2RT +2RT (w? + w2 +wl)
E=I J' J‘ 3,1 sz )( 1 5 ( 1 2 3 J [3]
e dw dedW'S
(ii) To evaluate the integral, we first note that any odd functions of Wy, Wz Or ws integrate
to zero. Using p = nm this leaves us with,
e e e 3 2,.2. 2 2 2 .2 .2
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From the given integrals,
o oo on _ —1»2 .
f ] fe i le wgdw,dwzd% Jean
L o on 3i2
I [wie Ve ™ e ™ dwdwydw, = %J;JE = TET (fori=1,2 or 3)
Hence
2 2
E=pr| 38T pr)| = o3BT L V2 (8]
2 2 2 2
(iii) For a monatomic gas ¢, = 3R7/2. The energy of the g£as per unit mass is thus,
3RT | v? y? 2
—+ —|=c T+ —=eg+—
2 2 2 2
where e is the specific thermal energy. This is as expected from macroscopic considerations,
For a perfect gas RT = p/p and so the microscopic energy flux can be written,
2 2
E = pV{e+£+V—J=pV(h+V_J
fo) 2 2
where 4 is the specific enthalpy. This also is expected from macroscopic considerations. The
extra contribution arises in the macroscopic analysis because of the flow work term. At the
microscopic level this term is simply absorbed into the total energy flux.
(4]



2. (a) / Small hole of diameter a

Nitrogen with
trace impurities

! = dx ! Ndx holes in length dx

Under free-molecule conditions (i.e., collisions between molecules can be neglected
compared to collisions with the walls of the pore), the leakage mass flowrate M, of impurity
gas i through a single pore is given by,

M. = na’ mn;C _ na’p; C; - na’p¥,C,
! 4 4 16 16

where, for impurity i, m; is the mass of a molecule, C; is the mean molecular speed and piis
the mass density. The nitrogen molecules are not involved because the pressure outside the
tube is the same as inside. There is no ‘return’ flux of i-molecules because the gas outside
the tube is effectively pure nitrogen (i.e., the impurity concentration is negligible).

Applying conservation of mass of impurity i to the control volume of length dx gives,

nD? _ aD? d{=D?
4 4 dx

.V pV + — Tp,-V}ir + NMdx

Noting that p, = ¥,p and using the expression for M, derived above gives,

na’ pC, a® NG,

2
4 dx 4 4 dx 4p- vV
But C, = (8RT/nM,)""? and hence, (7]
3y f =2
(R i with A EEd e
dx 1fM,- D\ 2n

(b) Integrating this equation subject to ¥;=Y;p at x=0, gives,

In(i) = -
Yol ~ M,
As A does not depend on any property of the impurity gas, we therefore have,

he o WI(YL] - i n(g-) [5]
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(¢) To estimate the mean free path of an i-molecule we consider the collision with
nitrogen molecules of a single ;-molecule moving at the mean speed for i-molecules. We can
neglect collisions with other impurity molecules because their concentrations are very small.
For simplicity we assume that all the nitrogen molecules are stationary.

nitrogen molecule
diameter 4

. C,' U
i-molecule ._,.e_,

diameter d \"“ “tube’ of diameter (drtd)

-+ E,dr -

In time df the i-molecule collides with all nitrogen molecules having their centres in the
‘tube’ of diameter (d; + ) and length C,dt . If the number density of nitrogen molecules is n
then the number of collisions in time 4t is,

n{d; +d)* C,dt
4 —
The distance moved by the i-molecule in time d is C, dt . Hence, the mean free path is,

S
nn(d, +d)

But the mean free path of a nitrogen molecule is,

4

A= —
nu(d+d)”

Hence,

A 4;1(14-1{')—2
\ q)

If the flow through the leakage hole is under free-moiecule conditions then,

Kn:-ﬂi>>l
a

where Kn is the Knudsen number. From the data in the question we have, for pure nitrogen,
= pCA/2. Hence, the condition for free-molecule flow through the hole can be written,

-2 -2 = 112 -2 = 1/2
g = aaf14+9) = B, 4 ) _ SuRT (M NOf d; = g #|8nRT
d pC\  d pM \8RT d o

N2 8
where B, = [H-i] . =
d



Z,=2 ™ =l+e T re 4 where t=hv/kT =0,/T

This is just the sum of a GP with common ratio e™* (which has modulus less than 1)

=8, (5]

(b) Let the K-th state be the last in the series, so K =g, /hv. Then,

k=1 - hnd
7. = Ze-nhv-kf — Ze-nhvfkf _Z e-m’w!ﬂ"
vib = -
=0 =0 n=K
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Given the form of ¢., vi» when there is no dissociation, it follows that with dissociation,

Covib ( & )2 &7 _[ g‘_ )2 g
R T/ (=1 LT/} (& 17

For 6,/ T =1 and neglecting the second term,




Now 8,/T =(8,/6,)0, /T =8x]1

]
b 2 0.921-(8) —%
- (8)

H

W=o.921—0.0215=g&
& B

[7]



4. (a) For an isolated system at equilibrium, all microstates are equally probable, so
Pi=1/Q.

S——k2—1n5= gln—Zl kInQ

Consider a system initially at equilibrium. By inserting a rigid, insulating partition it is
possible to divide the system into two isolated subsystems A and B, each at equilibrium, The
systems are independent of each other so the total number of microstates is

Q=0 %xQ,
S=kInQ=kIn(Q, xQ,)=kInQ, +kInQ, =S5, +S,

Evidently, no change in state will take place when the partition is removed (since A and B
were initially at equilibrium with each other), so the total entropy is the sum of the entropies
of the constituent parts, as is required of an extensive property. [6]

(b) (i) Reversible and adiabatic implies isentropic, so no change in entropy and
hence the number of microstates remains as £y .
vV 8314 1

(i) AS= mRinY = mE1n Y — 0001834 1L _ 000076 3K
v, M V, 20 125

= exp((S—5,)/ k)

it

Q=0Q, exp(—09276/1.38x107%)
=Q, exp(—6.72 x 10*") (6]

(c} The probability that the system has energy £ (corresponding to temperature,T) is:
P(EY=Q_P,

where Pg is the probability of being in a microstate with energy £ and €z is the number of
microstates with this energy. Qg can be obtained if we assume that the system entropy can be
calculated from



Thus,
mec, 'k
QTY _ ssom_| T
=¢ =| —
Qy T,
—EIkT, ~(mo, JkNTIT,)
Now P.= ¢ =£

Q Q

0

o (7Y
P(T)= E(F) exp(—oT /T,)

hence P(T,)= %5’-(1)m exp(—0t)

P(T)=(£) exp@{l-T/T,}) ; a=25_ QIXISXB3E_, 5 (o=
P(T,) \T, Kk 138x107°x20

P(T) is the product of two terms, one that rises extremely rapidly and one that falls extremely
rapidly. Since o is so large (for finite systems) the result is effectively a delta function, so the
probability of significant departures from the average temperature is very small.

4
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Relative probability, HT¥P(Tu)

i
|
I

il
0 A
Tetnperature, T

[Note that writing (7 / T) = 1 + x and expanding gives exp (~xt{(7=Ty) / T, 0}/2) for the
above expression. This could be derived by instead considering the total entropy of
combined system -+ reservoir, as in the 2008 paper.
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