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1. (a) (i) The integral represents the mean value of . Thus, 
 

 

 
Kinetic temperature is defined in terms of the mean translational KE of a molecule by, 
 

 
 
Translational KE is equally partitioned at equilibrium so . 
 
(ii) The flux per unit area of the quantity  carried by molecules with C1 > 0 is 
given by the integral, 
 

 

 
(iii) Substituting the Maxwell-Boltzmann expression for f, 
 

 

 
To carry out the integrations it is sensible to apply the transformations, 
 

,              ,               . 
 
Substituting into the integral and noting that  mn = ρ  gives, 
 

 

 
Using the given definite integrals we have, 
 

 

Hence, 

 

 
where  is the ‘one-sided’ mass flux per unit area through the plane (see given data). 
Hence, the mean value of  carried by molecules with C1 > 0 is RT [and not RT/2 as in 
part (i), above]. This is because the equipartition principle does not apply – the KE flux (as 
opposed to the bulk average KE) is dominated by those molecules with higher values of C1.  
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(b) (i) Pressure = 1 Pa 
Gas mass density at 350 K   1.374×10−6 kg/m3 
Mean molecular speed at 350 K  1361.6 m/s 
Mean free path at 350 K 2.35×10−2 m 
Knudsen number 11.8 
Kn >> 1  so heat transfer is in the free-molecule regime. 
 
Molecules are reflected diffusely from each plate (accommodation coefficients = 1) and 
make no collisions with other molecules before impacting the other plate. The mass flux 
emitted from plate 1 is  and from plate 2 is . These must be equal as the net 
mass flux between the plates must be zero. Hence, . However, although we 
know T1 and T2 it is not obvious how to find ρ1 and ρ2. To circumvent this problem, a good 
approximation is to calculate the one-sided mass flux using average values of ρ and T. 
Hence, the rate of heat transfer per unit area is approximately given by: 
 

  194.6 W/m2 

 
Note that the mean translational KE per unit mass appropriate to the energy flux is 2RT 
rather than cvT = 3RT/2 which is the mean value in the bulk. The extra RT/2 comes from the 
calculation in part (a) (iii) above. Candidates were not penalised for missing this detail. 
 
(ii) Pressure = 10,000 Pa 
Gas mass density at 350 K   1.374×10−2 kg/m3 
Mean molecular speed at 350 K  1361.6 m/s 
Mean free path at 350 K 2.35×10−6 m 
Knudsen number 0.00118 
Kn << 1  so heat transfer is in the continuum regime. 
The thermal conductivity can be calculated from the Prandtl number and the viscosity. 
Thermal conductivity  0.171 W/m2K 
 
Rate of heat transfer per unit area is given by, 
 

  8550 W/m2 

Examiner’s comment: 
This question was very well done. It was gratifying to see that almost all candidates had 
absorbed the course material very well and knew exactly what they were doing. The only 
real difficulties occurred at the end when trying to derive expressions for the heat flux under 
free molecule and continuum conditions. Some candidates got into a mess here by 
mistakenly trying to include the Knudsen layer in the analysis.  
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2. (a) (i) The six groups have absolute velocity components ci in m/s as follows : 
 
 (480, 120, 0); (50, 550, 0); (50, 120, 430); 
 (−380, 120, 0); (50, −310, 0); (50, 120, −430). 
 
 The components of the mean velocity ui are thus : 
 
  u1   =   (480  −  380  +  50  +  50  +  50  +  50) / 6   =  50 m/s 
  u2   =   (120  +  120  +  550  −  310  +  120  +  120) / 6   =  120 m/s 
  u3   =   (0    +   0   +    0   +   0   +  430  −  430) / 6   =  0 m/s 
 
 The thermal or peculiar velocity components are given by Ci = ci − ui :  
                                  (430, 0, 0);         (0, 430, 0);          (0, 0, 430); 
                                (−430, 0, 0);       (0, −430, 0);         (0, 0, −430). 
 
 Temperature is defined in terms of the mean translational KE by, 
 

     →           311.3 K 

 
 (ii) It is easy to show that, in general, . For the 6-group gas, 
 

 
 

 
 
 For a diatomic gas at 311.3 K only the 2 rotational states will be activated. If the 

energy is partitioned equally, the rotational energy per unit mass is, 
 

       

 
(b) (i) Simple theories of thermal conduction give  β  ≅ 1  because they assume that all 

molecules make their last collision about one mean free path distance from the plane of 
interest and acquire there the local average kinetic energy. In fact, molecules with 
higher kinetic energies tend to come from further away. Taking this into account (as in 
the Chapman-Enskog theory) gives β  ≅ 5/2. 

 The Eucken model for diatomic and polyatomic gases adopts a factor β = 2.5 for the 
translational part of the heat flux while β  = 1 is used for the internal (rotational and 
vibrational) part. Thus, 
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(ii) The dynamic viscosity is  (this is pretty obvious from the expression for 
k even if it hasn’t been memorised). Hence, for the 6-group gas, 

 

 0.019 W.m−1K−1 

 
(c) The term  is the i-direction flux of translational KE per unit mass of gas. It is 

decomposed by substituting  ci = ui + Ci . Adopting the summation convention : 
 

 
 

            
 

                  (using ) 
 

 The i-direction heat flux per unit mass is . 
 For the 6-group gas C = 430 m/s for all groups. We therefore find, 
 

 

  

 Thus, the heat flux is zero in all directions. Actually, this is obvious because the 6-
group peculiar velocity distribution function is symmetric. 

 
Examiner’s comment: 
This question was very well done. It was gratifying to see that almost all candidates had 
absorbed the course material very well and knew exactly what they were doing. The only 
serious problem occurred right at the end where most candidates identified  as the 
heat flux (ui being the mean velocity and Ci being the peculiar velocity) instead of . 
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3. (a) The solution is simply, 

 

  

ψ = Acosωφ+ Bsinωφ = ψ0 cosω (φ− φ0 )

where ω2 = 8π2Iε
h2

 

In order for ψ to be single-valued at φ – φ0 = 0, 2π, 4π etc., ω must be an integer. Thus, 

 
   
8π2Iε

h2 = ω2 = n2 ⇒ ε = n2h2

8π2I
n = 0,1,2… 

(b) (i)   Z = g j exp(−ε j / kT )∑ = 1× e0 +1× e−ε/kT = 1+ eτ  

(ii) The terms in Z give the relative probabilities of a molecule’s being in each of its 
energy states, so the fraction of molecules in the electronically excited state is 

 
  
f = eτ

1+ eτ  

hence the internal energy associated with electronic excitation is 

 
  
Ue = Nf ε = Nε eτ

1+ eτ ⇒ ue =
Ue

Nm
= ε

m
eτ

1+ eτ  

The electronic component of specific heat capacity is thus 

 

  

cv
e = ∂ue

∂T
⎛
⎝⎜

⎞
⎠⎟ v

= ε
m

d
dτ

1− 1
1+ eτ

⎛
⎝⎜

⎞
⎠⎟

dτ
dT

= ε
m

eτ

(1+ eτ )2

ε
kT 2 = ε

kT
⎛
⎝⎜

⎞
⎠⎟

2
k
m

eτ

(1+ eτ )2 = Rτ2 eτ

(1+ eτ )2

 

(iii) The required assumption is that the translational and rotational energy modes are 
fully excited. (This is reasonable as electronic excitation requires large energy jumps and 
is therefore only significant at elevated temperatures.) Together, the fully excited modes 
contribute 5R/2 to cv in accordance with the equipartition principle. Thus 

 
  
γ =

cp

cv

= cv + R
cv

= 1+ 1
5 / 2+ cv

e / R
 

Hence γ will have a minimum value when the electronic contribution to cv is a maximum. 
Taking logs (for convenience) and differentiating the expression in (ii): 
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ln cv
e

R
= τ + 2lnτ − 2ln(1+ eτ )

∴ 1
cv

e

dcv
e

dτ
= 1+ 2

τ
− 2eτ

1+ eτ

⇒ 1+ 2
τ
= 2eτ

1+ eτ when cv
e  is max.

 

Substituting the value of τ = –2.4 gives 0.1667 on the LHS and 0.1663 on the RHS. At this 
value of τ, the expression for electronic cv gives 

 

  

cv
e / R = 2.42 e−2.4

(1+ e−2.4 )2 ≈ 0.43923

∴ γ min = 1+ 1
5 / 2+ 0.43923

≈1.340
 

 
Examiner’s comment: 
This was a relatively straightforward question and the majority of candidates demonstrated a 
reasonable understanding of the material. Most candidates were able to find the correct 
general solution to the Schrodinger equation for a diatom constrained to rotate in a plane, 
and also correctly identified and implemented the boundary condition so as to find the 
possible rotational energy states. (The only minor error was that many assumed the ‘ground 
state’ was n=1 rather than the correct n=0). In the second part of the question, most attempts 
at deriving the expression for the electronic component of specific heat capacity were 
acceptable, but many derivations contained errors that somehow disappeared to reveal the 
given expression. In attempting to obtain the minimum value of γ, several candidates forgot 
about the translational and rotational energy modes, and many others made a mess of the 
algebra.  
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4. (a)  A single arrangement of the monomers may be written as a series of “–”s and 
“+”s, e.g., + + – + + + + – – + ... + + – + etc. There are N objects in this series which if they 
were all distinct could be arranged in N! ways. However, the N+ “+”s and the N– “–”s are 
indistinguishable, so the total number of distinct arrangements is 

 
  
Ω = N !

(N + )!(N − )!
 

 (b)  The Boltzmann relation (S = k ln Ω) will apply to the configurational component 
of entropy if each of the arrangements is equally probable. This really requires that the 
energy of the “microstates” is independent of whether the monomers are oriented in the +ve 
or –ve directions. Writing S = Sc + St (i.e., configurational and thermal components), 

 

  

Sc = k lnΩ = k{ln N !− ln N + !− ln N − !}
= k{N (ln N −1)− N + (ln N + −1)− N − (ln N − −1)}
= k{N ln N − N + ln N + − N − ln N −} (since N + + N − = N )

 

But, 

  
  

N + + N − = N ∴ N + = 1
2 (N + L / a)

N + − N − = L / a N − = 1
2 (N − L / a)

 

Hence, 

  

  

∂S
∂L

⎛
⎝⎜

⎞
⎠⎟ T ,N

= ∂Sc

∂L
⎛
⎝⎜

⎞
⎠⎟ N

= −k(1+ ln N + ) dN +

dL
− k(1+ ln N − ) dN −

dL

= k
2a

ln N −

N +

⎛
⎝⎜

⎞
⎠⎟
= k

2a
ln Na − L

Na + L
⎛
⎝⎜

⎞
⎠⎟

 

Thus, A = k / 2a. 

(c) The above result shows that the configurational entropy decreases with length. If the 
band is stretched adiabatically and reversibly then its entropy remains constant. Since Sc 
goes down the thermal component must go up, implying an increase in temperature. 
 

(d)   
  

δQ = TδS and δW = −τδL
∴ δU = δQ − δW = TδS + τδL

 

Hence:  δF = δU −TδS − SδT = TδS + τδL−TδS − SδT = τδL− SδT  

From the theory of partial derivatives, 

 
  

∂2 F
∂T ∂L

= ∂2 F
∂L∂T

⇒ ∂τ
∂T

⎛
⎝⎜

⎞
⎠⎟ L

= − ∂S
∂L

⎛
⎝⎜

⎞
⎠⎟ T

 

Since S decreases with L this implies the tension increases with temperature (i.e., as it is 
heated), contrary to “normal” expectation. 
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Examiner’s comment: 
The techniques required for this question were quite standard, but the physical application 
(i.e., the model of a rubber band) had not appeared in previous papers. This is probably why 
so few candidates attempted the question. Most explanations of the expression for the 
number of configurational microstates were loosely correct, but only one candidate gave a 
clear and thorough explanation. Part (b) (deriving an expression for the rate of change of 
entropy with length of the band) was not well done, although most candidates were able to 
make a start. Not a single candidate used the ‘cross derivatives’ in the given expression for 
changes in Helmholtz function to determine the effect of temperature on tension, though a 
few identified the correct trend with plausible physical explanations. 
 
AJW / JBY 
May 2015 


