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1.  (a) Kinetic temperature TK is defined as proportional to the average thermal (i.e., random) 
translational kinetic energy of molecules, with the constant of proportionality such that: 
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where k is Boltzmann’s constant (i.e., an average molecular energy of kT/2 per mode). Thus, 
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TK is equal to the thermodynamic temperature T under equilibrium conditions. (Unlike T , 
the kinetic temperature is well-defined for non-equilibrium situations.) 
 
(b)  (i) Putting Q = mci in the expression for FQ gives: 
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The first term represents the convection xi-momentum due to bulk motion of the gas, 
whereas the second term is the negative of the stress σij and is due to the transport of 
momentum by random molecular motion.  
 
 (ii) For a Maxwellian velocity distribution, the peculiar velocity components are un-
correlated (this is clear from the distribution given in the question paper), so 
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Since the Maxwellian distribution is an even function in each of the Ci, the averaged quantity 
is zero if n or m is odd for i ≠ j or if n+m is odd for i = j. 
 
 (iii) Shear stresses are given by 
 
   τij = −ρCiC j         for       i ≠ j  
 
which according to (iii) would be identically zero in a Maxwellian distribution. Since at least 
some of the shear stresses are non-zero in a laminar boundary layer it follows that the 
velocity distribution is not Maxwellian – some of the peculiar velocity components must be 
correlated. 
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 (iv) The pressure is the negative of the average normal stress, so: 
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(c) The flux of energy in the xj direction (FQ with Q = mc2/2) is : 
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Choosing the streamwise direction as x1 gives 
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Along the nozzle centre line (out of the boundary layer) the velocity distribution will be 
Maxwellian, so use can be made of the results of part (b) (ii). Thus, 
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each squared term involving Ci inside the brackets contribute RT/2 (from the definition of 
kinetic temperature, and since there is no preferred direction for the peculiar velocity 
components. Hence, 
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   so   B =  5/2  

 
The additional RT equates to p / ρ and is due to the flow work. 
 
Examiner’s note: 
 
This was the least popular question. Many of those that attempted it failed to spot the link in 
part (b) between the integral expression for FM (see eq. 1 above) and the averaged values 
(RHS of eq. 1) and hence got bogged down in difficult integrals (which in any case would 
only be valid for equilibrium distributions). Remarkably, a few students correctly evaluated 
these integrals in part (c).    
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2. (a)  
 
Assume molecules make their last collision one mean free 
path above or below the plane y = 0. 
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Net flux of KE in positive y-direction  =  heat flux  =  q = −
ρCλ cv
2

dT
dy

 

 

Thermal conductivity k is defined by 
dy
dTkq −=  and hence,  k =
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Thus  β  = 3/4.  
 
More detailed solutions of the Boltzmann equation increase β (by a factor of 5/2). This is 
because molecules with higher velocity (and therefore higher KE) tend to come from further 
away and this correlation is not accounted for in the simpler mean-free-path theories. 
 
 
 
 (b) The mean free path can be estimated by considering the average volume swept out 
between collisions and assuming this to contain one molecule, thus 
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where d is the effective diameter of a molecule and m is its mass. Thus, 
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i.e., k is independent of pressure and scales as the square root of T. Hence  
 
    k400 = k300 × (4 / 3) = 0.0178×1.155= 0.0206 Wm–1K–1 (to 3 SF) 
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(c) The attractive intermolecular forces ‘soften’ the molecule such that its effective 
‘target’ diameter is bigger: 
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The effective diameter deff would be expected to fall with increasing molecular speed, 
so that the λ would be expected to increase with T, and hence k will increase faster 
than T1/2. Thus the real value of k is likely to be higher than 0.021 Wm–1K–1.  

 
 
 (d) Conditions are in the continuum regime (Kn=0.001) so, 

 (i) q = k400
ΔT
H

= 0.02055× 200
0.001

= 4.11 kWm–2  

(ii) q = −k dT
dy

= −AT 1/2 dT
dy

= const.  

 ∴ q dy∫ = −A T 1/2 dT
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 ⇒ qH = 2
3
AT2

3/2 − AT1
3/2⎡⎣ ⎤⎦ =

2
3
k500 ×500− k300 × 300⎡⎣ ⎤⎦  

 where k500 = k300 (500/300)1/2 = 0.02298 Wm–1K–1.  

 ∴ q = 2
3
0.02298×500− 0.0178× 300⎡⎣ ⎤⎦ / 0.001= 4.10 kWm–2  

 i.e., only ~0.25% error 
 
Examiner’s note: Part (a) was done very well by nearly all who attempted this question, as 
might be expected (MFP models have appeared many times), but performance on the rest 
of the question was ‘mixed’. There were, however, several perfect or near-perfect 
solutions.  
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