
1. 
(a) The wave-particle duality is the concept that under certain circumstances, waves 
can display particle-like characteristics (e.g. light comes in discrete packets called 
photons), and particles can display wave-like characteristics such as interference and 
diffraction (e.g. electron diffraction).  The particular choice as to whether to describe 
an object as a particle or a wave therefore depends on the context, and both should be 
seen as different aspects of the same thing.   

From a practical standpoint, the wave-particle duality only becomes apparent 
when the object or it’s surroundings have dimensions comparable to it’s wavelength.  
deBroglie hypothesized that the wavelength of a particle would be given by the 
expression λ = h/p, where p is the momentum and h is Planck’s constant/  Likewise, 
the momentum of a wave is given by p = h/ λ = ħk.   

(b) The answer should include a description of wave-like characteristics: interference 
& diffraction. 

4B5 - Dr C Durkan



The Kinetic Energy, K.E. of the ejected electron  = Energy of incident light – work 
function (φ).  Remember, the work-function is the amount of energy required to 
release an electron from the material. 

i.e. K.E. = I - φ where I is the light energy.  It was initially thought, on the basis of 
classical electrodynamics that I would be the energy of the electromagnetic field, as 
dictated by the Poynting vector, and would be proportional to the light intensity.   
However, experiments showed two intriguing effects: 

(i) Changing the light intensity made no difference to the K.E. of the 
ejected electrons, it only changed the number of them. 

(ii) Changing the colour of the light affected the K.E. of the electrons, 
with a direct relationship between the light frequency and the K.E. 

i.e. Einstein proposed that  I = hf where the constant of proportionality, h, is Planck’s 
constant. 

ð K.E. = hf - φ.  

This means that light comes in packets or quanta, with an amount of energy equal to 
hf.  These packets are called photons, and, as they are spatially localized, they can be 
considered as particles in certain situations. 

This directly led to the advent of quantum mechanics, as the wave-particle 
duality and the fact that light comes in discrete quanta came contrary to what classical 
mechanics or EM theory predicted.  This was one of the first cases of the application 
of Planck’s constant. 

(c)   
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(ii) The value of r at which the energy is a minimum is when dE/dr = 0 
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  = 23.9  𝑝𝑚.   This is the Bohr radius 

(iii) The Bohr model of the Hydrogen atom is naïve, as it neglects the fact 
that an electron in such an orbit would emit radiation and quickly lose 
energy, leading to a collapse of the atom.  A more detailed model, 
found by solving the Schrödinger equation for the Coulomb potential, 
finds the same value for r, but that the orbit is fuzzy and 3D.  
Discussion could also mention about fact that QM is probabilistic 
rather than deterministic. 

Assessor’s comments: 
This question posed some difficulties for many of the candidates as it was a little more 
conceptually challenging than past questions.  They were asked to determine the equilibrium 
size of the electron orbit in a hydrogen atom using Bohr’s model, and most got the idea right, 
but only a few obtained the correct answer.   
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(a) 
The potential energy of the system is V, where  
 

V = 1/2κx2 = 1/2mωc
2x2 

 
Schrödinger’s equation for this system is 

 
 
 

 
 
 

This problem can be simplified if we employ a change of variables from x to 
y, where y =  x mω c  , and define α = 2E/ħωc  
Schrödinger’s equation is now: 
 
 

                                                                                                              

The solution of which is known to be  
 
(To see where this comes from, look at the asymptotic solution when y>>a, which is 
of the form y = ynexp(-y2/2).)   
 
Substituting this form of ψ(y) into the above equation, we find 
 

F``-2yF` + (α-1)F = 0.                                      
We should now assume a power series solution for F(y);  
 
 
 
 
 
From which it can be seen that: 
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An important point here is that y can never have a negative power, as that 
would lead to an infinity at y = 0 which would be unphysical (ψ must always be finite, 
as |ψ(x)|2 represents the probability of the particle being located at position x).  The 
first two terms of F`` therefore must equal 0, so we must put p = p+2 in the above 
expression for F``. 
 Substituting for F, F` and F`` into Schrödinger’s equation leads to the 
following: 
 

 

 
For a non-trivial solution, the coefficient of each power of y must vanish, leading to 
the following recursion relationship: 
 
 

 

 
However, the resulting power series tends to infinity with increasing y (the 

limit of ap+2/ap tends to 1/p, the sum of which is infinity), so we must truncate the 
power series.  

The solution can be re-written as two power series, each containing either all 
even or odd powers of y.  Using the recursion relation above, all coefficients can be 
expressed in terms of either a0 or a1.  Then we need to choose some value for p, say, 
n, such that 2p + 1 - α = 0.  That power series will end there, and we need to neglect 
the other power series.   

 
Both of these conditions lead to the following: 
 

  α = 2n+1 for n = 0, 1, 2….. 
  a1 = 0 for n even, a0 = 0 for n odd 
 
From our definition of α  = 2E/ħωc we have for the energy eigenstates of the quantum 
simple harmonic oscillator: 
 

En= (n+1/2)ћωc.                                                                 

That is, discrete, equally spaced energy levels, with a ground state, or zero-point 
energy, of (1/2)ћωc..  Each energy level corresponds to a phonon mode.  What is the 
consequence of the zero-point Energy?  It means that according to quantum 
mechanics, a harmonic oscillator can never be completely at rest, because then we 
would know it’s momentum (zero) and position precisely, which goes against 
Heisenberg’s Uncertainty principle.  In practice it means that even at absolute zero, 
the atoms in a material will still be jiggling around by a very small amount.   
 
 
 
 
 

2
0

( 2)( 1) (2 1 ) 0.p
p p

p
p p a p a yα

∞

+
=

⎡ ⎤+ + − + − =⎣ ⎦∑

( )
( )( )

2 2 1
.

1 2
p

p

a p
a p p

α+ + −
=

+ +⎡ ⎤⎣ ⎦



(b) 
(i) Normalising, we find that the first three wave functions are 

 
 
 
 
 
 
 
 
 
 

 
 
 

In the ground state, the most probable position is in the centre, whereas for 
higher levels, the probability oscillates quickly. 
 
(i) & (ii): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The differences between the classical and quantum harmonic oscillator are 
that for the ground state, the classical oscillator is most likely to be found at 
the extremes, whereas the quantum oscillator is most likely to be found at the 
centre.  Also, the quantum oscillator has a finite probability of being found 
beyond the classical extremes of motion. 

 
 
 
(c)  Assume that all the potential energy is converted to kinetic energy.  Therefore, the 

ground state energy of !
!
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=> 𝑝 =    𝑚ℏ𝜔!  
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Therefore, Δ𝑝Δ𝑥 = ℏ
!
  => Δ𝑥 = ℏ
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Now, 𝜔! = !""
!.!"×!"!!"

  = 4.2×10!"  𝑟𝑎𝑑/𝑠 

 
 
=> Δ𝑥 =   ℏ

! !ℏ!!
  = 6  𝑝𝑚  

 
 
 
 
Assessor’s comments: 
This question was reasonably well answered.  Everybody who attempted it obtained the 
correct energy levels and were able to plot the probability density, but only 1 candidate 
normalized the wavefunctions correctly.  A few people applied the uncertainty principle 
correctly and were able to determine the positional uncertainty of a Hydrogen atom. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 
(a) 
An example of electron tunneling across a gap: 

 
 
Here, an electron with total energy EFL encounters a barrier of height φ, where φ > 
EFL. 
Within the barrier, the electron is described by the wavenumber k, where  
 

𝑘 =   
2𝑚(𝐸!" −   𝜙)

ℏ!  

 
However, as the electron’s total energy is less than the barrier height, k is complex.  

Remember, the kinetic energy of the particle is ℏ
!!!

!!
, so if k is complex then the 

kinetic energy will be negative, which does not make physical sense, so is contrary to 
classical mechanics, which predicts that the electron simply cannot pass the barrier. 
Examples of tunneling: 

(i) Across the gate oxide in a FET 
(ii) In the STM 
(iii) In Photosynthesis 
(iv) In Alpha-decay 

 
(b) 
(i) A conventional diode has a doping density of around 1022 dopant atoms /m3.  In 
contrast, a resonant tunneling diode has a doping density of up to 1025 dopant atoms 
/m3.  This causes the depletion region to be very thin, of the order 10 nm.   
(ii)  At a given energy, En, the current, in is proportional to the transmission 
probability, Tn at that energy.  We can write this as 

𝑖!   ∝   𝑇! 
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Figure 1.2: An energy level diagram for a one-dimensional electron-tunneling 

junction. The Fermi energy (EF) of the tip and sample are offset by the applied 

bias (V) times the electron charge (e
-
). The tunnelling current is exponentially 

dependent on the distance between the tip and the sample (Z). 

 

An overview of STM operation is detailed schematically in Fig. 1.2, which presents a 

one-dimensional metal-vacuum-metal STM tunnel junction. The operation of a 

scanning tunnelling microscope (STM) is based on the tunnelling current, where an 

electron (e-) starts to tunnel when an atomically sharp conducting tip approaches 

sample, within a few atomic diameters, using piezoelectric ceramic materials 

(usually PZT - lead zirconium titanate) for probe tip motion on a sub-angstrom scale 

[18]. This is a result of a small overlap of the wavefunctions between the empty and 

filled states of a tip and sample, respectively, or vice versa. A feedback loop 

constantly monitors the tunnelling current and makes adjustments to the tip to 

maintain a constant tunnelling current in the constant current mode. A general 

quantum mechanical formula based on the Bardeen’s approach demonstrates that the 

tunnelling current is a convolution of the DOS of the tip and the sample. However, 

assuming the tip DOS tρ  is constant, any change in tip height with position under 

eV=EF,tip–EF,sample  
EF,tip 

EF,sample 

Z e
-
 

+V 



When a voltage bias is applied, it opens up multiple energy channels, so the total 
current, 𝐼 = 𝑖!   ∝    𝑇!   
However, these channels are very close together in energy, so we can replace the 
summation with an integral, so the overall current becomes: 
 

𝐼   ∝    𝑇!𝑑𝐸
!"

!
 

 
Now, the current depends on the density of electronic states on both sides, denoted by 
ρl and ρr. 
 
i.e.   𝐼   ∝    𝜌!𝜌!𝑇!𝑑𝐸

!"
!  

 
 
(c)   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig. (a), i.e. under zero applied bias: there is no net current flow, as the electron 
current from the conduction band of the n-type into the valence band of the p-type is 
balanced by the electron current from the valence band of the p-type in to the 
conduction band of the n-type.  In Fig. (b), under reverse bias conditions, the bands on 
the p-type side are raised relative to the n-type side, and electrons can flow from p to 
n, tunneling across the depletion region.  The width of this region will increase as the 
voltage is increased, so little current will actually flow.  In Fig. (c), which is under a 
low forward bias, the electron-filled states in the n-type conduction band overlap with 
the holes in the p-type valence band and a significant current can tunnel across the 
depletion region, similar to Regime B in Fig. (b).  In Fig. (d), as the forward bias is 
increased, the degree of overlap between the n-type conduction band electrons and the 
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p-type valence band holes decreases, as more of them start to overlap with the band 
gap within the p-type.  This has the effect of reducing the current across the depletion 
region as there are fewer states for the n-type electrons to tunnel into.  In Fig. (e), 
similar to Regime (c) in Fig. (b), the current drops to its minimum value, as there is 
no longer any overlap between the conduction band electrons in the n-type and holes 
in the p-type: there are no available states for the electrons to tunnel into.  The only 
current that can flow at this point is a small inelastic tunnel current and a small 
thermal diffusion current.  In Fig. (f), when the applied forward bias is large enough, 
the height of the potential barrier between the n and p-type is low enough for a 
thermal diffusion current to flow over the barrier, and this becomes the dominant 
means of current flow.   
 
 
(d)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(e)  Resonant tunneling diodes initially gained a lot in interest for their potential 
application in oscillator circuits, particularly ones operating at high (Microwave) 
frequencies.  The reason for this can be seen by considering the simplest possible 
oscillator : an LC circuit (i.e. an inductor in parallel with a capacitor).  Due to the 
phase difference of 180 degrees between the voltage dropped across each of these, 
energy is effectively continually transferred from one component to the other — the 
circuit is an oscillator.  Once the oscillations begin, if we remove the voltage driving 
source, the oscillations would continue indefinitely in the absence of any resistance 
within the circuit.  However, all circuits have some resistance, so real oscillator 
circuits have a finite Q-factor.  In principle, if we could add a negative resistance into 
the circuit to counteract the stray resistance of the components, we could greatly 
increase the circuit’s Q-factor.  This is done by adding a resonant tunneling diode into 
the LC circuit, and ensuring that it is operating in the middle of its NDR region.  This 
is illustrated below.  In recent years, the tunnel diode has been replaced by digital 
components which are more reliable and which have significantly better performance. 
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(iii) 

(iv) 
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Typical circuit utilising a tunnel diode.  The voltage source V is used to set the diode 
operating in the NDR region, and to start the oscillation.  It also provides the energy 
to sustain the oscillation 3f the circuit.  The oscillation frequency is                     . 
 
 
Assessor’s comments: 
This was very well answered in general.  Almost all candidates drew the correct band 
structure of the resonant tunneling diode and understood its operation.  A number of 
candidates over-complicated part b(ii), and attempted to calculate the transmission 
probability for a tunneling barrier, even though that is not what was asked for.  
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4. 
(a) 
The basic principle behind the operation of all SPMs is that a sharp probe tip is 
scanned in close proximity to a sample surface, whilst some interaction between the 
two is used to generate an image of the surface.   Central to this is a feedback loop 
that controls the tip-sample distance during scanning in order to maintain a constant 
interaction, as shown in the figure below.  Different types of SPM utilize different 
interactions, and as a result, map different properties of the system under 
investigation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In atomic force microscopy which was developed a few years after the STM, the 
interaction between tip and sample is based on forces rather than on currents as is the 
case in the STM.  These forces are usually sensed by placing the tip on a micro-
machined cantilever beam (these are now mass-produced and may be purchased for a 
few dollars), the deflection of which is measured using a position-sensitive detector.  
The simplest way to implement this is to use the “beam deflection” method, whereby 
a laser is focused on the cantilever near the tip end, and as the cantilever bends, the 
reflected laser beam will move.  This motion can easily be detected with a quadrant 
photodiode (QPD), as illustrated in the figure below. 
 In this way and using an off-the-shelf laser and photodiode, it is possible to 
detect cantilever deflections of the order 0.01 nm.  AFM has also demonstrated 
atomic resolution capability in recent years.  There exist many different types of force 
at the nanoscale, including friction, van der Waals, magnetic, electrical and thermal, 
among others. Different forces can be selectively measured simply by choosing a 
suitable tip. 
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 In tapping mode, the cantilever is oscillated just below its resonance 
frequency.  The oscillation amplitude is rather large, at several tens of nm.  This 
means the cantilever has enough energy to prevent the tip snapping onto the surface 
or getting trapped in the contamination layer.  It also means that the tip “samples” the 
entire force gradient all the way from far away to contact, so the force changes from 
attractive to repulsive, making quantitative measurements of the force impossible.  
Distance regulation and hence imaging is typically done by maintaining constant 
oscillation amplitude, usually at around 90–95% of the free amplitude (i.e. the 
amplitude when the tip is far away from the sample), as shown in the figure below.  
As an imaging technique, this is perhaps the most commonly used one now, as it has a 
very good resolution at the same time as having very low lateral forces on the sample.  
This is the technique of choice for looking at soft matter (mostly biological material).  
 

 
 
 
 
 
 
Resonance curve of a 
typical intermittent-contact 
mode AFM cantilever.   A 
typical operating point is 
indicated on the plot.  The 
difference between non-
contact mode and 
intermittent contact mode 
is mainly in terms of the 
operating point and the free 
oscillation amplitude. 

 
 
 
In standard operation, the phase of the cantilever oscillation is monitored at the same 
time as the amplitude.  Phase images, whilst again extremely difficult to quantify, 
reveal material differences.  This is useful when imaging samples, particularly 
copolymers or self-assembled monolayers with little or no measurable topographic 
variation, but with distinctly different materials.  Tapping-mode can also be used 
under liquid environments, although the reduced Q-factor of the cantilever due to 
hydrodynamic damping reduces the sensitivity.   Tapping-mode is the most 
commonly used mode of operation of the AFM today, as it lends itself to imaging of 
both hard and soft samples.   
 
 
 
(b) Bond-level resolution has been achieved by functionalizing the AFM tip, and by 
operating in non-contact mode under UHV conditions, and generally at low (liquid 
Nitrogen) temperatures.  In non-contact mode, the cantilever is oscillated just above 
the resonance frequency at an amplitude of typically a fraction of a nm, and the 
frequency shift is monitored and used as the feedback control signal.  The tip is 
functionalized by picking up a molecule, usually by picking one up from the surface 
under study.  Experiments have shown that by adding a CO molecule to the tip apex, 
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the spatial resolution of the resulting images is high enough to be able to resolve the 
individual bonds between atoms, hence bond-level resolution, on the order of 0.1 nm.  
By comparison, the resolution of STM is around 0.2 nm, at the atomic scale, so not 
sufficient to observe bonds. 
 
(c) 
(i) Phase imaging could be used to distinguish between the polymers A & B, and as 
they will have different mechanical & chemical properties, there will be a contrast in 
the phase between both materials.  This is not quantitative, and cannot be used to 
uniquely determine which is which material, as the phase contrast is a complex 
function of setpoint, frequency and other forces present, and can easily become 
inverted. 
 
(ii)  One could operate in contact mode and measure the friction on each polymer – 
generally the coefficient of static friction is known for materials, so it is possible to 
determine which is which.  Alternatively, force spectroscopy could be employed, and 
it could be determined which polymer is harder, again something that is often known.  
A final option would be to combine optical spectroscopy, e.g. Raman spectroscopy 
with AFM, as each polymer will have a unique signature. 
 
Assessor’s comments: 
This was not well-answered in general and was unpopular, probably as it was a bit more 
descriptive than many of the other questions (however, it was favoured by the graduate 
students taking the module).  Few students were able to describe tapping mode AFM in 
sufficient detail, and the answers were too general.  A disappointing set of answers.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5. 
(a) 
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1.  Bound states – electron in an infinite potential well 

 Consider the situation whereby the electron is in a “Potential well” of infinite height, i.e.: 

In regions I & III, the potential is infinite.  That means there is no possibility of finding the particle 
there, so it must be confined to region II.  What is it’s configuration, i.e. can the particle have any 
energy and sit in any position within the well? 

The form of the potential is:   V = 0 for  0 < x < L 
     V =  ∞  for x < 0, x > L 

Schrödinger’s equation in region II is: 
 

ψ(x) = Aeikx + Be-ikx     where k =   
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2 
1

Since the wave-function is zero outside the well, it must also be zero just at the boundaries  
(for continuity). 

 matching at left side              ψ (0) = A + B => A = - B 

 i.e.     ψ(x) = A(eikx – e-ikx) = Asin(kx) 

matching at right side             ψ (L) = 0 => Asin(kL) = 0   => k = nπ/L,         n = 1,2….. 

 

In other words, the wave-function for an electron in an infinite potential well is of the form   

                            ψ (x) = Asin(nπx/L) 
To find the value of A, we need to normalise the function, i.e. 

 

A2 sin2(nπ x
L
)dx =1

0

L

∫

This gives us a value for A = (2/L)1/2 
Remember, Energy, E = ½mv2 = p2/2m = 
ħ2k2/2m 
If k = nπ/L, then the Energy levels of an 
electron confined in an infinite well are 
 E = h2n2/(8mL2) 

=> 



(b) 
 (i) The energy of the nth state is 
 

𝐸! =   
ℎ!𝑛!

8𝑚𝐿! =   
6.6×10!!" !𝑛!

8×0.3×9.1×10!!" 10!! ! = 2𝑛!×10!!"  𝐽 

 
= 12.5𝑛! meV 
 
Therefore, the energy of the first 4 states is: 
 
n1 = 12.5 meV, n2 = 50 meV, n3 = 112.5 meV, n4 = 200 meV. 
  

(ii)  The wavefunctions for the first two states are : 
 

𝜓! =   
2

10!! sin
𝜋𝑥
10!! =   1.414×10!sin  (3.14×10!𝑥) 

 

and  𝜓! =   
!

!"!!
sin !!"

!"!!
=   1.414×10!sin  (6.28×10!𝑥) 

 
 
The probability densities are the wavefunctions squared, which look as 

follows: 
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(c)  The boundary conditions are that (i) the wavefunctions squared and (ii) the first 
spatial derivatives of the wavefunctions are continuous at the boundaries.  The 
significance of these is (i) the wavefunction squared is a measure of the probability 
density – the wavefunction squared at any point is equal to the probability of finding 
the particle a that point.  As this is a probability, it must be single-valued at all points 
and continuous, hence the requirement for continuity at the boundary.  As regards the 
second condition, d2ψ/dx2 is proportional the kinetic energy of a particle, so if dψ/dx 
has any discontinuities, then the second derivative would be infinite, corresponding to 
infinite kinetic energy, which does not make physical sense. 
(d)  If the well is finite, then there is no longer a strict requirement that the 
wavefunction outside the well should be zero.  As a result, the value of the 
wavefunction at the boundary no longer needs to be zero, and it will have a finite 
value.  The consequence is that the wavefunctions have an exponential tail into the 
outside well regions.  The confinement is therefore slightly less, and the energy levels 
will drop relative to their infinite well values.  The nature of the wavefunctions 
outside the well is that they are exponentially decaying, and have a complex k-vector, 
which means they carry no momentum or energy outside the well.  From the 
standpoint of classical mechanics, the probability of being found outside the well is 
zero, as a complex k-vector corresponds to a negative kinetic energy, which is 
unphysical.   

 
 
Assessor’s comments: 
This question was well-answered across the board.  Being quite mathematical it is favoured 
by the undergraduates taking the course, and they mostly demonstrated a very secure 
understanding of the course material. 
 
 


