
4B5 solutions 2016 

1. 

(a)  Schrödinger’s equation can be written in the regions to the left and right of the step as 

 (-ħ2/2m2/x2 ) I(x) = EI(x)   Region I 

(-ħ2/2m2/x2 +V) II(x) = EII(x)   Region II 

The solutions to these equations are: 

I(x) = A1eik
1

x + B1e-ik
1

x where k1 =   

and II(x) = A2e-k
2
x  where k2 =   

Matching the wave-functions and their first derivatives at the boundary (x = 0) yields the 

following relationships:  

A1 + B1 = A2  

ik1A1 – ik1B1 = -k2A2 

i.e. B1/A1 = -(k2 + ik1)/(k2 – ik1) 

The reflection probability is  B1/A12, which in this case equals exactly 1.  This represents the 

probability that a given particle will be reflected from the potential step, so must lie between 

0 & 1.  R does not represent the fraction of a particle which will be reflected.  If we pass a 

large number of electrons over this potential step, then on average, a fraction R of them will 

be reflected, but any individual electron will either be totally reflected or totally transmitted. 

(b)    
 Schrodinger’s equation is now 

(-ħ2/2m2/x2 + V) I(x) = EI(x) Region I 

(-ħ2/2m2/x2) II(x) = EII(x) Region II 

(-ħ2/2m2/x2 + V) III(x) = EIII(x) Region III 

The solutions to these equations are: 

I(x) = A1eik
1

x + B1e-ik
1

x where k1 =   
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II(x) = A2ek
2
x + B2e-k

2
x where k2 =    

 

AndIII(x) = A3eik
1

x  where k3 = k1    

 

 

 

Probability density: 
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If we say that the amplitude of the incident wave is 1, then the wave-function at the 

right hand edge of the barrier region is approximately: II(d) = e-k
2

d , so the transmission 

probability, T is roughly e-2k
2
d  .  We are using the assumption that the coefficient A2 ~ 0, 

as it is always << B2.   

Given the values of E, and V, we obtain a value for k2 = 3.25x109 m-1.   

Therefore, T ~ 1.5x10-3, which is vanishingly small. 

 

 

Assumptions: (i) only an exponentially decaying term in barrier, (ii) effective mass of 

electron in each region is the same 

To improve precision, would include full form of II, and would determine 

transmission probability for entire structure. 

 

(c)  This phenomenon is called tunneling, and is commonplace.  It is used in the STM, 

happened across gate oxides in FETs, is the mechanism behind field emission and 

alpha-decay.  Answer should include a brief discussion on one of these topics. 

 

 

 

 

 

 



 

 

 

 

 

2.   

(a)  When a voltage is applied, the entire potential profile becomes sloped, and the 

conduction band edge on the left approaches bound state E1. 

 

 

 

 

 

 

 

 

 

        Filled states     Empty states 

 

(b) The current, I depends on the transmission probability, T as follows: 

 

 

 

As V is increased, the bound state energy E1 starts below Ef, then when V is 

large enough they coincide, causing a peak in T.  As V is further increased, 

there is no longer a match between E1 and Ef, and T starts dropping.  As we 

continue to increase V, E2 starts to coincide with Ef, and we get another peak 

in T.  further increasing V will cause T to drop again, and eventually Thermal 

current will start to dominate and the conventional exponential increase in 

current with applied voltage for a diode will be observed. 
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(c)   
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(d) Potential materials could be GaAs and GaAlAs.  These can be 

deposited by MBE and will have typical layer thicknesses of the order 10 nm.  

GaAlAs has a larger bandgap than GaAs, and can be used for the barrier 

regions. 

  

 

 

3.  

 

(a)  
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Now add in another well: 

Now for a very large number of wells: 

Energy levels become bands. 



If the wells are close enough, the tail of the wave-functions within each well can extend 

appreciably into neighbouring wells.  This gives rise to a coupling between the wells, and 

generates new wave-functions which are combinations of the original ones.  For two wells, 

those combinations are the sum and difference between the original functions.  Hence, there 

will be two states instead of one.  For N wells, each state will become N closely spaced states.  

The closer the wells are to each other, the larger will be the splitting in energy.  This is similar 

to beats in the addition of waves: the closer the frequency, the more pronounced are the beats. 

As the wells are brought closer, the coupling increases and so therefore does the splitting of 

the energy levels. 

 

(b) (i) Assumptions in the nearly-free electron model: 

The electrons do not interact with each other  

The electrons have discrete energy values 

The electron gas follows Fermi-Dirac statistics 

 

(ii)  

 

 

 

 

 

 

 

(iii) 

 

 The general solution of the Schrödinger equation with a periodic potential is 

(x) = eikxu(x).  This is a plane wave modulated by the function u(x), where u(x) is a periodic 

function with the periodicity of the lattice, i.e. u(x) represents the influence of the crystal 

potential.  This is known as Bloch’s theorem, and u(x) as a Bloch function.   

If we expand the potential as a Fourier series, we can now do the same for u(x), to obtain: 

 

 

 

where n = 0, 1, 2,….. and Gn = 2n/a 

That gives for the total expansion of the wave function: 

We now insert the Fourier expansions of both (x) and u(x) into Schrodinger’s equation,  
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  (-ħ2/2md2/dx2 + V)x = Ex)  

 

We end up with a set of simultaneous equations in the unknown Cn.  Note that the Vp are 

known, as the form of the crystal potential is assumed initially.  There are an infinite number 

of terms, so to make the problem manageable, we artificially truncate the series and consider 

only the leading-order terms given by n = 0, 1.  This is justified for weak potentials such as 

those found in metals. 

 

 V(x) = V0 + V1eix/a + V1e-ix/a              

 If we continue along the same lines, we can assume that the wave-function also only contains 

leading-order terms, i.e. 

 

 (x) = [C0 + C1e
ix/a]eikx          

 

(-ħ2/2md2/dx2 + V0 + V1e
ix/a + V1e

-ix/a)[C0 + C1e
ix/a ]eikx =   

 

E[C0 + C1eix/a]eikx 

  

(- ħ2k2C0/2m + V0C0 + C0V1eix/a + C0V1e-ix/a - ħ2(k + x/a)2C1 eix/a /2m +  

 

V0C1eix/a  + V1C1e2ix/a + V1C1) = EC0 + E0C1eix/a 

 

Collecting terms in eiG
1

x, we find that: 

 

   C0V1 = [ħ2(k + G1)2/2m - E + V0]C1 

 

Terms without any exponent give: 

 

   V1C1 = [(ħ2k2/2m) - E + V0]C0       

    

For a non-trivial solution, both ratios for C1/C0 must be equal, i.e. 

 

  C1/C0 = [(ħ2k2/2m) + E - V0]/V1 

  

     =  V1/[ħ2(k + /a)2/2m + E - V0]       

 



or, [E – V0 + (ħ2k2/2m)] [E – V0 + ħ2(k + /a)2/2m] 

     

      = V1
2   (Everything is symmetric)    

 

 

 

 

 

 (c) Dispersion relation: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. 

(a)  The basic principle of STM is that a probe tip scans over a surface in close 

proximity to it (typically less than 1 nm), and we monitor the tunneling current 

between the two whilst scanning- maintaining a constant current and therefore a 

constant distance via a feedback loop.  The information we can obtain from STM is 

the spacing between features at the atomic scale, variations in density of states, and 

overall, electronic density of states.   

 

(b) Answer should include a discussion of vibration isolation, height resolution 

needing to be of order a few pm.  Needs to be in a quiet environment, and requires 

ultrahigh vacuum (UHV).  Samples and tips need to be prepared in UHV, and 

materials can be explored at atomic scale.   

 

(c) Answer should touch on the fact that STM has atomic resolution, can only be 

used to look at conducting materials, and requires UHV.  AFM can be 

operated in air, liquid or UHV, to perform measurements on conductors, 

nonconductors, hard materials, soft materials, living cells etc.   Under typical 

operating conditions, AFM has a resolution of a few nm, but under very 

special conditions it has demonstrated bond-level resolution.   
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(d) Video-rate AFM, multi-tip AFM, Quantitative mechanical measurements are 

now possible due to better calibration of cantilever stiffness, and closed-loop 

scanners in all 3 axes. 

 

 

e.   

 

5.  (a) Nanotechnology is the ability to both fabricate and characterise structures with 

characteristic dimensions in the range 1-100 nm.  Discussion should mention some of 

the following: 

  Electronic mean-free path 

  Magnetic domain size 

  Electron wavelength 

  Phase coherence length 

  Surface effects, surface area/volume ratio 

(b) Discussion should contain elements on the following: 

 Wave-particle duality: electrons in devices have associated wave-

packets, interference, resonant effects, tunneling, STM, nature of surface 

states. 

 

 (c)  Wave-functions represent the probability distribution of the quantum 

particles to which they pertain.  If we have a particle described by the wave-function 

ψ(r, t), then  

| ψ(r, t)|2 is the probability of finding the particle at position r at time t.  The rules for 

determining ψ(r, t) in boundary value problems are that ψ(r, t) and it’s first derivative 

are continuous at all the boundaries.  Physically this means that the wave-functions 

are single-valued, i.e. there is only one value for the probability of finding the particle 

at any point in space.  Also, the energy of a quantum particle is proportional to 

δ2ψ/δx2, so if there were any discontinuities, that would correspond to infinite energy, 

which is physically impossible.   

 

 (d) This is resonant tunnelling, where the energy of the electrons is the same as 

that of a bound state within the well.  The shape of the wave-function in the well is 

consistent with the ground state.  Discussion should include notion of resonant 

tunnelling, excitation of meta-stable well state, relative amplitude of incident and 

transmitted waves, boundary conditions.  Most accurate way to estimate electron 



energy is to use wavenength,  as an estimate using the infinite square well formula 

will be too innaccurate.  From the graph,  = 1 nm, from which we have 

2 2 2

22 8

k h
E

m m
  = 0.374 eV.  Using the infinite well approximation, we get 1.04 eV. 

 

 

 

 

 

 


