
4B5 solutions 2017 
Short answers 
 
 
 
1(c) 2.23 nm 
 
2(b) 8.9 meV, 1.33 meV 
 
3(a) 0.988 eV 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4B5 solutions 2016 
 
1. 
 

(a) We should consider electrons as wave-packets in situations where there are 

single electrons traversing a system at a time, i.e. when current levels are very 

low, typically sub femto Amp levels.  When there are larger numbers of 

electrons, we can approximate them as a beam of electrons, which 

corresponds to a plane wave.  Plane waves are monochromatic, so have a 

single value of energy and momentum, but have no spatial localization 

associated with them, whereas wavepackets comprise a range of energy and 

momentum values, and do exhibit localization, consistent with a single 

particle.   

(b) Wave-packets used to represent electromagnetic (EM) waves and matter have 

different dispersion properties, in that EM wavepackets exhibit no dispersion, 

and do not spread out over time, whereas matter wavepackets naturally 

disperse.  The relationship between energy, E and momemtum, k for EM 

wavepackets is E = ħkc, whereas for matter waves, E = ħ2k2/2m.   
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(c) Well, E = ħ2k2/2m which can be rearranged to be k =  = 2p/l => l = !
"#$

 

The numerical value of this is %.%'()*+,

"')."'-.('()*+.'(./'(.%'()*.0
 

 = 2.23 nm.   

Given that the device size is around 14 times the electron wavelength, there is a 

strong chance quantum effects will be noticeable.  The electron energy is much 

greater than the thermal energy kBT, so these effects should not be smeared out.  The 

current-voltage characteristics will display some oscillatory behavior due to 

interference between electrons scattered off both ends of the transistor. 

As the transistor is reduced in size, the quantum effects will start to become more 

noticeable, and it will start to behave like a quantum well, with the effect that the 

current-voltage characteristics will start to deviate from those of a conventional 

transistor, with more pronounced oscillatory behavior.  As well as this, as the wires to 

the transistor shrink, their resistance will continue to increase, and as their dimension 

shrinks below the electron mean free path, their resistivity will also increase.  When 

they decrease below around 5 nm, the resistance will take on discrete values, again 

due to electron interference effects. 
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2.   

(a) The material is Ga0.3Al0.7As and has a band gap of 1.424 + 0.7×1.247 = 

2.297 eV.  This is split equally between the conduction and valence bands, and 

as the band gap of GaAs is 1.45 eV, this means the difference in bandgaps, 

which is (2.297 – 1.45) eV leads to quantum wells of depth (2.297 – 1.45)/2 =  

0.424 eV.  Therefore, in the absence of any band-bending, the heterostructure 

has a band profile as shown: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Assumptions: 

(i) The energy levels of interest are low enough that we can use the infinite 

well approximation.  This is valid as long as they are less than 1/10 of 

the well depth. 

(ii) The electrons are non-interacting. 

(iii) There is no band-bending 

 

The solution should include a derivation of the spectrum of energy levels 

associated with an electron of effective mass m* in an infinitely deep well of 

width L: 
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From which we find that the electron energies are En
e = 8.9 n2 meV 

and the hole energies are En
h = 1.33 n2 meV 

The electron ground state energy (n = 1) is around 1/50 of the well depth, so our 

estimate will be accurate, as will the hole ground state energy which is around 

1/100 of the well depth. 

Therefore, the ground state energies are  :  En
e = 8.92 meV, En

h = 1.33 meV, 

leading to a transition energy of 1.45 + 0.0089 + 0.00133 eV = 1.46 eV 

 

(c)   Sketch of optical density and it’s origin: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Examiner’s note: a few candidates forgot to include the fact that the change in band 

gap was shared equally between the conduction and valence bands, and a few also 

assumed the transition energy was just the difference between the energy levels, 

leaving out the 1.45 eV band gap.  Also it is worth mentioning that the transitions 

between states of equal symmetry (the thicker lines above) are more favourable, so 

have higher intensity. 
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3(a) 
The potential energy of the system is V, where  
 

V = 1/2kx2 = 1/2mwc
2x2 

 
Schrödinger’s equation for this system is 

 
 
 

 
 
 

This problem can be simplified if we employ a change of variables from x to 
y, where y =  x mω c  , and define a = 2E/ħwc  
Schrödinger’s equation is now: 
 
 

                                                                                                              

The solution of which is known to be  
 
(To see where this comes from, look at the asymptotic solution when y>>a, which is 
of the form y = ynexp(-y2/2).)   
 
Substituting this form of y(y) into the above equation, we find 
 

F``-2yF` + (a-1)F = 0.                                      
We should now assume a power series solution for F(y);  
 
 
 
 
 
From which it can be seen that: 
 
 

                                 and                  

 
An important point here is that y can never have a negative power, as that 

would lead to an infinity at y = 0 which would be unphysical (y must always be finite, 
as |y(x)|2 represents the probability of the particle being located at position x).  The 
first two terms of F`` therefore must equal 0, so we must put p = p+2 in the above 
expression for F``. 
 Substituting for F, F` and F`` into Schrödinger’s equation leads to the 
following: 
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For a non-trivial solution, the coefficient of each power of y must vanish, leading to 
the following recursion relationship: 
 
 

 

 
However, the resulting power series tends to infinity with increasing y (the 

limit of ap+2/ap tends to 1/p, the sum of which is infinity), so we must truncate the 
power series.  

The solution can be re-written as two power series, each containing either all 
even or odd powers of y.  Using the recursion relation above, all coefficients can be 
expressed in terms of either a0 or a1.  Then we need to choose some value for p, say, 
n, such that 2p + 1 - a = 0.  That power series will end there, and we need to neglect 
the other power series.   

 
Both of these conditions lead to the following: 
 

  a = 2n+1 for n = 0, 1, 2….. 
  a1 = 0 for n even, a0 = 0 for n odd 
 
From our definition of a  = 2E/ħwc we have for the energy eigenstates of the quantum 
simple harmonic oscillator: 
 

En= (n+1/2)ћwc.                                                                 

So, for our specific problem, we do not know wc but we do know k and m.  The 

relationship between these parameters is 𝜔; = 	
=
#

  = 1.59x1014 rad/s.  Therefore, the 

ground state energy, where n = 0 is ћwc/2 = 8.3x10-21 J = 0.988 eV. 
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(b) 
 

 
In the ground state, the most probable position is in the centre, whereas for 

higher levels, the probability oscillates quickly. 
 
(i) & (ii): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The differences between the classical and quantum harmonic oscillator are 
that for the ground state, the classical oscillator is most likely to be found at 
the extremes, whereas the quantum oscillator is most likely to be found at the 
centre.  Also, the quantum oscillator has a finite probability of being found 
beyond the classical extremes of motion.  For highly excited states (large 
values of n), the quantum and classical agree.  This is indicated above where 
we have also drawn the probability density for n=2 and n=3, and we can see 
that by the time we get to n=3, the peak probability is shifting towards the 
extremes. 

 
 
 
 

 

 

 

 

 

Examiner’s note:  almost all were able to derive the correct expression for En, but a 

few though the ground state was n = 1 rather than n = 0.  Most candidates did not 

mention that the quantum and classical probabilities converge for high values of n. 
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4.  (a) 
 

 Consider the two materials independently: they have different band-gaps, 

where the difference between them both is the band offset, DE.  Before allowing 

band-bending: 

 

 

 

 

 

 

When the materials are placed together, electrons will diffuse down the 

potential step from the GaAlAs where there is a higher concentration of 

electrons, and go to the GaAs where there are fewer electrons.  Likewise, holes 

will diffuse to the left.  The net effect of this is that a dipole layer of charge is 

formed just at the interface, which causes the bands to electrostatically bend, 

resulting in the following band structure: 

 
 

 
 
 
(b) 2DEGs have a very high mobility – they are a way to greatly increase the carrier 
density in a semiconductor without having to dope it, hence reducing the scattering of 
electrons as they traverse the material.  An example of a device incorporating a 2DEG 
is a bipolar transistor as shown below: 
 

 

DE = 0.25 eV 

Material 1 

Material 2 



(c) As electrons flow across this junction, we would expect the I/V 
characteristics to be mostly determined by the transmission probability, T.  
This is a potential step, so will have a T which varies as follows: 
 

  
T asymptotically approaches 1, so once the voltage is high enough, I will vary linearly 
with V, but until then, it will have a dependence more like that shown above.  The 
expected characteristics will vary as shown below, akin to a diode.  When there is 
band-bending, that results in more noticeable diode-like characteristics, also shown 
below: 
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5.   
(a) The Rayleigh criterion states that the closest spacing between two point objects 
that can be resolved is of the order 0.8l.  At this point, the dip in intensity at the 
midpoint between the images is 20%.  For light of wavelength 500 nm, that 
corresponds to a spacing of 0.8x500 nm = 400 nm. 
 

 
 
 
 
 
(b)  Principle of operation: 
 
 

           
 
 
 
A bias voltage is applied between the tip and the sample, both of which must be 
conducting.  When the distance between them is less than ~ 1 nm, a tunnel current 
flows, which is typically in the range 1 pA – 1 nA for a bias voltage 0.1 - 1V.  The tip 
is mounted on an xyz actuator which scans it over the surface, and a feedback loop 
controls the z-height in order to maintain a constant tunnel current.  The image thus 
obtained, of z-height as a function of xy position, is essentially a map of the local 
density of electronic states of the sample.  The tunnel current varies exponentially 
with tip-sample distance, in accordance with the transmission probability varying as T 
~ e-2ka, where k is the wave-vector of electrons in the tunnel gap.  More exactly, the 
current varies as :   
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where rs and rt are the density of electronic states in both the tip and the sample.   
  For typical materials, this leads to a variation of the tunnel current by around an 
order of magnitude for each Å variation in tip-sample distance.  This means that the 
mechanical construction of the STM must lead to very low external noise being 
coupled into the microscope.   
 
 
 
 
 
 
 
                   
 
 
 
 
              sample 
 
 
Principle of operation of STM.  Insert shows two possible tip states, i.e. where the apex atom has its outer 
electrons in s or d orbitals.  On the right, we have indicated the overlap between tip and sample wavefunctions, 
which gives rise to tunneling. 
 
 
To estimate the lateral resolution of STM, we make use of the fact that the tunnel 
current depends exponentially on the tip-sample distance.   If the STM tip has a radius 
of R nm, and the minimum tip-sample distance is s, then the distance between the tip 
surface and the sample varies with x as z = s + x2/2R, as shown in Fig 4.3.   
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.3.  STM tip if radius R a distance s away from a surface showing the variation in distance from the tip away 
from the apex. 
 
If we define the resolution as the lateral distance at which the current drops to around 
10% of its maximum value, we get a value for x of around (0.1/2R)0.5.  This means 
that in order to achieve atomic resolution (i.e. x ~ 0.1 nm) the tip radius should be no 
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larger than 5 nm.  In actual fact, the tip radius is often much larger than this, and 
atomic resolution is still achieved, indicating that there must be an asperity, possibly 
even a single atom at the end of most STM tips.  In many cases, this single atom can 
come from the sample itself.  The nature of this apex atom will determine the 
resolution, image contrast and spectroscopy data obtained in any given STM 
experiment, so extensive cleaning is often carried out on STM tips in order to improve 
repeatability. 
STM has been demonstrated time and time again to be capable of atomic resolution 
on surfaces.  However, apart from the case of HOPG (graphite), this comes at a price 
— UHV (Ultra-High Vacuum).  UHV conditions (i.e. base pressure of 10-10 mbar or 
lower) are required in order to maintain a clean STM tip and sample surface for a 
number of hours.  Under ambient conditions, all surfaces are coated with several 
monolayers of adsorbed “contamination” — mostly water and hydrocarbons that are 
naturally present in air.  In order to probe the underlying surface, samples need to be 
cleaned, and the amount of time for which they remain clean will depend on the 
pressure of their local environment.  Under ambient conditions, any surface will 
remain clean for only a fraction of a second, and under deep UHV conditions (~ 10-11 
mbar) this can be extended to several days.  In a typical STM experiment, the tip 
(usually etched W or mechanically cut Pt/Ir tips are used) and sample are cleaned 
immediately prior to imaging, usually by repeated cycles of thermal annealing and ion 
sputtering. Vibration isolation is paramount, as the floor in a typical building will be 
vibrating at several Hz, with an amplitude of several µm.  These vibrations must be 
damped to around 1 pm or below for the STM to work effectively.  There are many 
different ways of achieving this level of isolation: (i) the STM head can be made 
small and stiff with natural resonance frequencies in the kHz range, or (ii) the STM 
can be mounted on vibration isolators.  For ease of use, many researchers have gone 
for the second option, as small STMs can be rather difficult to use, especially under 
UHV conditions. 
 
 

(c) The potential as seen by an electron.  S is the gap, which in this case is 1 nm. 
 
 
 
 

 

 



Q1  Wave-particle duality & the structure of atoms 

This question was mostly well answered, with good descriptions of the differences between plane 

waves and wave packets in the context of quantum mechanics.  The last section on calculating the 

wavelength of an electron in a transistor was also well handled with some insightful discussions.   

 

Q2  Band Engineering & Quantum wells 

This question was very well answered.  The majority of candidates who attempted it obtained the 

correct energy levels and were able to describe the optical density of a 1D quntum well. 

 

Q3 Quantum harmonic oscillator 

This was very well answered.  Most candidates were able to solve the Schrödinger equation for the 

quantum harmonic oscillator, and derived the correct spectrum of energy levels, with the result that 

most calculated the ground state vibration energy of the given molecule.  A few candidates mistakenly 

thought the ground state was for n = 1 rather than n = 0.  Most were conceptually correct regarding 

the differences between the probability distribution and the classically expected one, but only a 

handful of candidates went on to describe how the classical and quantum results converge for high 

values of n. 

 

 

Q4  Semiconductor heterostructures and 2D electron gasses 

This was not well-answered in general, perhaps as it involved some lateral thinking and was about a 

heterostructure not encountered before.  The aim was to apply the principles learned in lectures to this 

new setup to predict the overall shape of the current-voltage characteristics.  All answers correctly 

drew the band structure and knew the relationship between Transmission probability and current but 

struggled to put it all together.  As regards the last part, only one candidate mentioned that the 2DEG 

is desirable as it is a way of increasing the charge density within an intrinsic semiconductor, so will 

have a very high mobility, as opposed to the case when we dope a semiconductor which results in 

lower mobility. 

 

Q5  Microscopy 

This question was well-answered.  A few candidates forgot to add the fact that in order for an 

electron to flow from the tip to the sample, there needs to be a potential difference, and 2 candidates 

described the AFM rather than the STM, but otherwise it was well done. 

 

 


