4C16 2015 Solution
(a) Reynolds' equation from Satasneet

$$
\frac{d p}{d x}=12 \eta \frac{\bar{u}}{} \frac{n-n^{*}}{n^{3}}
$$

In this case $\bar{u}=u / 2$
Sima in bern inlet 2 outlet regions n is constant then so is pressure
 gradient $\frac{d y}{d x}$

Setting pressure at step as Ps
inlet $\left.\quad \frac{d p}{d x}\right)_{1}=\frac{3 p_{5}}{2 B}=6 \eta u \frac{h_{L}-h^{*}}{h_{1}^{3}}$

$$
\text { 14. } \frac{6 \eta u h^{*}}{h_{1}^{3}}=\frac{6 \eta u}{h_{1}^{2}}-\frac{3 p s}{2 r^{3}}
$$

Outlet $\left.\frac{d p}{d x}\right)_{0}=-\frac{3 p_{5}}{B}=63 n \frac{h_{0}-n^{*}}{n_{0}^{3}}$

$$
\frac{6 \eta u h^{*}}{h_{0}^{3}}=\frac{6 \pi n}{h_{0}^{2}}+\frac{3 p s}{B}
$$

hance $\quad 6 \eta u h_{0}+\frac{3 p s h_{0}^{3}}{B}=6 \eta u h_{1}-\frac{3 p s u_{1}^{3}}{2 B}$

$$
{\underset{p}{p}}_{2 B}^{B}\left(h_{1}^{3}+2 h_{0}^{3}\right)={ }^{2} \operatorname{lonu}\left(h_{1}-h_{0}\right)
$$

But $h_{1}=h_{0}+d \quad P_{3}\left[\left(h_{0}+d\right)^{3}+2 h_{0}^{3}\right]=4 \eta \mathrm{MBd}$

$$
\text { le. } p_{5}=\frac{4 \eta U B d}{\left[\left(h_{0}+d\right)^{3}+2 h_{0}^{3}\right]}
$$

But load per unit width $P^{\prime},=\frac{1}{2} p_{5} B$

$$
\text { \& } P=\frac{2 \eta^{4} B^{2} d}{\left[\left(n_{0}+d\right)^{3}+2 h_{0}^{3}\right]}
$$

Equally well equate volume how in milt \& outlet
again from data suet $\left.q_{x}\right|_{i}=-\frac{h_{1}^{3}}{12 \eta} \frac{3 p}{2 B}+\frac{b_{1} u}{2}$

$$
\Rightarrow q_{x} b_{0}=\frac{h_{0}^{3}}{123} 3 \frac{p_{3}}{B}+\frac{r_{0} n}{2}
$$

equating $\frac{u}{2}\left(h_{1}-h_{0}\right)=\frac{3 r_{s}}{12 \eta B}\left\{\frac{h_{1}^{3}}{2}-h_{0}^{3}\right\}$
as before.
(b) Put $D=d / h_{0}$ then $P^{1}=\frac{2 \eta U B^{2}}{h_{0}^{2}}\left[\frac{D}{(D+1)^{3}+2}\right]$ for given η, n, , ho maximising P^{\prime} requires

$$
\begin{aligned}
& \left.\frac{a[]}{d D}=\frac{(D+1)^{3}+2-3(D+1)^{2} D}{[}\right)^{2} \Rightarrow 0 \\
& \text { se. } \quad D^{3}+3 D^{2}+B D+1+2-3 D^{3}-6 D^{2}-3 D=0 \\
& 2 D^{3}+3 D^{2}-3=0
\end{aligned}
$$

If $D=0.8064 \quad L H S=-.0004^{\text {N }}$ then $h_{0}=\frac{d}{.8064}=1.24 h_{0}$
(c) Consiace shear stresses τ acing on vouner; al any position $\tau=\eta \times$ velocity gradient

Velocity gradient dominated by Conetue or shear term so to a reasonable approximation
in meet version $\tau_{1}=\eta \frac{u}{h_{1}}$ and outlet $\tau_{2}=\eta \frac{u}{h_{2}}$
$\therefore F^{\prime}$, timpential toed $/$ visit with $=\frac{2}{3} B \cdot \tau_{1}+\frac{B}{3} \tau_{2}$

$$
\begin{aligned}
\Rightarrow & \frac{2}{3} B \frac{u \eta_{1}}{n_{1}} \frac{1}{3} \frac{B u \eta}{n_{0}} \\
& =\frac{\eta u B}{3 n_{0}}\left\{\frac{2}{D T 1}+1\right\} \\
F^{\prime} & =\frac{\eta u B}{3 h_{0}}\left\{\frac{D+3}{D+1}\right\}
\end{aligned}
$$

then $C o F \cdot \frac{F^{\prime}}{P^{\prime}}=\frac{\eta n B}{3 n_{0}} \frac{D+3}{D+1} \cdot \frac{n D^{2}}{2 \eta h B^{2}} \frac{(D+1)^{3}+2}{D}$

$$
\Rightarrow \frac{n o}{B} \cdot \frac{1}{6} \frac{D+3}{D+1} \frac{(D+1)^{3}+2}{D}
$$

$$
\begin{aligned}
& \text { So if } \frac{h o}{B}=\frac{1}{1000} 2 D=0.806 \\
& \operatorname{coF}=\frac{1}{1000} \times \frac{1}{6} \times \frac{3.806}{1.806} \times \frac{1.806^{3}+2}{.806}=0.0034
\end{aligned}
$$

TAside, allowing tor Porssecille tow provides on additional term So that $F^{\prime}=\frac{\eta u B}{3 u_{0}}\left\{\frac{D+3}{D+1}+\frac{6 D^{2}}{(D+1)^{3}+2}\right\}$

$$
\text { and } \begin{aligned}
\text { cot } & =\frac{\text { ho }}{B} \times \frac{1}{6} \times\left\{\frac{D+3}{D+1}+\frac{6 D^{2}}{(D+1)^{3}+2}\right\} \times \frac{(D+1)^{3}+2}{D} \\
& \Rightarrow 0.0042 \mathrm{l}
\end{aligned}
$$

(a) we nave $P^{\prime}=\frac{2 \eta B^{2} u}{n_{0}^{2}} \cdot \frac{D}{(D n)^{3}+2}$

But $n_{0}=d / D$, so interns of d

$$
P^{\prime}=\frac{2 \eta B^{2} u}{d^{2}} \frac{D^{3}}{(D+1)^{3+2}}=\frac{2 \eta B^{2} u f(D)}{d^{2}}
$$

If now U is doutsed while P^{\prime} vemaissconsiaut then $f(D)$ must. halve, le. $\frac{D^{3}}{(D+1)^{3}+2}=\frac{1}{2} \times \frac{.806^{3}}{1.806^{3}+2}$

$$
\text { ie. } \frac{D^{3}}{(D+1)^{3}+2}=0.0332
$$

or $\quad 30.14 D^{3}=D^{3}+3 D^{2}+3 D+3$

$$
\text { le. } \quad 27.14 D^{3}-3 D^{2}-3 D-3=0
$$

Using Solver on calculator gives $D=0.583$

So that now value of $h_{0}=\frac{d}{.583}=1.73 \mathrm{~d}$
le Thevease bn tactor $\frac{1.72}{1.24}=1.39$
and cof becomes

$$
\begin{aligned}
& 1.39 \times \frac{1}{1000} \times \frac{1}{6} \times \frac{3.583}{1.583} \times \frac{1.583^{3}+2}{.583} \\
& \quad=.0054 \text { le inareaseby } \frac{54}{34}=1.56
\end{aligned}
$$

Examina's comments
Parts (a) \& (b) qevevally well done - thare is no med to evaluate n^{*} explicith (it coms out at 1.204 ho if done). Frixed success with pait (c) oftar because of alactrvaic euvors - inivoancerio D is recommenoled. Paut (d) hot well rone. When the relocity chames so win the minimum fim tricumess no: the aimension that musi stan mechansed is step. d.
2) (a) B_{p}^{\prime} Follower contact on tip circle
(i)

Max. lift octan when $O A B$ are collinear i.e. $\quad \cos (\pi-\phi)=\frac{r}{6 r}=\frac{1}{6}$

$$
\begin{aligned}
& \therefore \pi-\phi=\cos ^{-1} \frac{1}{6} \\
& \quad \varnothing=99.6^{\circ} \\
& \begin{aligned}
y=\sqrt{(6 r)^{2}-r^{2}} & =\sqrt{35 r} \\
& =5.92 r
\end{aligned}
\end{aligned}
$$

(ii) Velocity diagram at max. lift:

$$
\omega_{A B}=\frac{a b}{A B}=\frac{3 r \dot{\phi}}{3 r}=\dot{\varnothing} \underset{\text { clorkenine }}{ }
$$

Acceleration diagram at max. lift

$$
\begin{aligned}
& \therefore \text { Ac ot } b=\ddot{y} \\
& \ddot{y}=-2 \times 3 r \dot{\phi}^{2} \times \frac{6}{\sqrt{35}} \\
&=-\frac{36}{\sqrt{35}} r \dot{\phi}^{2} \\
&=-6.09 r \dot{\phi}^{2}
\end{aligned}
$$

Acceleration at minimum lift is 3 ere
2) $\left(\cos x_{1}\right)$
(b)

$$
\begin{aligned}
y & =\frac{3 r}{\cos \theta}-r \tan \theta+\frac{r}{\cos \theta} \\
& =\frac{4 r}{\cos \theta}-r \tan \theta \\
& =r(4 / \cos \theta-\tan \theta)
\end{aligned}
$$

$$
\begin{aligned}
(o r: \quad y & =r \cos \theta+3 r \cos \theta+\tan \theta(3 r \sin \theta-r+r \sin \theta) \\
& =4 r \cos \theta+\tan \theta(4 r \sin \theta-r) \\
& =4 r \cos \theta+4 r \frac{\sin ^{2} \theta}{\cos \theta}-r \tan \theta \\
\cos ^{2} \theta+\sin ^{2} \theta=1 \quad & =\frac{4 r}{\cos \theta}-r \tan \theta
\end{aligned}
$$

COMMENTS:
Well anmered by mast. Almost all ford the max. lift but there were often errors in obtaining the acceleration. Equivalent mechanism's gererally well drown but sore mistake, in analysing geom.

$$
M=1000 \mathrm{ng} \quad A=2 \mathrm{~m}^{2} \quad C_{D}=0.4 \quad C_{R R}=0.01
$$

(a)

$$
p=1.2 \mathrm{by} / \mathrm{m}^{3}
$$

(i) Peak pover =

$$
\begin{aligned}
& 1000 \times 2.5 \times 10+\frac{1}{2} \times 0.4 \times 2 \times 1.2 \times 10^{3}+0.01 \times 1000 \times 9.81 \times 10 \\
= & 25,000+480+981 \mathrm{~W} \\
= & 26.5 \mathrm{~kW}
\end{aligned}
$$

(ii) (1) Acceleration

$$
\begin{aligned}
& \text { Erang }=\frac{1}{2} m v^{2}+\frac{1}{2} C_{D A} p a^{3} \frac{t^{4}}{4}+C_{R R M g a t}^{2} \\
= & \frac{1}{2} \times 1000 \times 10^{2}+\frac{1}{2} \times 0.4 \times 2 \times 1.2 \times 2.5^{3} \times \frac{4^{4}}{4}+0.01 \times 1000 \times 981 \times 2.5 \times 4^{2} \\
= & 50,000+480+1962 \\
= & 52.4 \mathrm{~kJ}
\end{aligned}
$$

(2) Conise

$$
\begin{aligned}
\text { Eregy } & =480 \times 10+981 \times 10 \\
& =4800 \\
& =14.6 \mathrm{~kJ}
\end{aligned}
$$

(3) Deceleration

$$
\begin{aligned}
\text { Erengy } & =-\frac{1}{2} m v^{2}+\frac{1}{2} C_{D A} A_{p} \cdots \\
& -50,000+240+981+\mathrm{J} \\
& =-48.8 \mathrm{~kJ} \quad \text { (by impection) }
\end{aligned}
$$

(4) Stop faery $=0$

Check of work dore against resistance in phase (3):

$$
\begin{aligned}
P= & \frac{1}{2} C_{P} A \rho\left(10-5 t^{\prime}\right)^{3}+C_{R R} m g\left(10-5 t^{\prime}\right) \\
E_{\text {reorg }}= & \int_{0}^{2} P d t^{\prime} \\
= & \frac{1}{2} C_{D} A \rho \int_{0}^{2} 10^{3}-3 \times 10^{2} \times 5 t^{\prime}+3 \times 10 \times\left(5 t^{\prime}\right)^{2}-\left(5 t^{\prime}\right)^{3} d t^{\prime} \\
& +C_{R R} m g \int_{0}^{2} 10-5 t^{\prime} d t^{\prime} \\
= & \frac{1}{2} C_{B} A_{P}\left[1000 t^{\prime}-\frac{1500 t^{\prime 2}}{2}+750 \frac{t^{3}}{3}-\frac{125 t^{4}}{4}\right]_{0}^{2} \\
+ & C_{R R} m g\left[10 t^{\prime}-\frac{5 t^{\prime 2}}{2}\right]_{0}^{2} \\
= & 1 / \times 0.4 \times 2 \times 1.2\{2000-3000+2000-500\} \\
& +0.01 \times 1000 \times 9.81 \times\{20-10\} \\
= & 240 \quad+981
\end{aligned}
$$

(iii)
(iv)

$$
\begin{aligned}
\therefore \text { Mean porer } & =\frac{(1)+(2)+(3)+(4)}{20} \\
& =914 \mathrm{~W} \simeq 1 \mathrm{~kW} \\
& \text { (Note: len than undine power of } 1461 \mathrm{~W}!) \\
\text { Flywheel motive power } & =\text { peak - mean } \\
& =25,547 \mathrm{~W}=25.5 \mathrm{~kW}
\end{aligned}
$$

IC engine cannot meet power demand for all of phase (1) γ (2) so:
Need to store at lear: $52442-914 \times 14$

$$
\begin{align*}
& +14610 \tag{to}\\
= & 54256 \mathrm{~J}
\end{align*}
$$

(v) so reed to mon engine for $\frac{54256}{914}=59.4 \mathrm{~s}$ before setting oft.
3) (b)

Flywheel

$$
\begin{aligned}
& U=\frac{1}{2} J w^{2} \\
& J=\frac{1}{2} m R^{2} \quad m=\pi R^{2} t p
\end{aligned}
$$

Maximum stress: $\quad \sigma \simeq \frac{1}{2} p R^{2} \omega^{2} \quad \therefore R^{2} \omega^{2}=\frac{2 \sigma}{\rho}$
Thus

$$
\begin{aligned}
m \quad U & =\frac{1}{4} m R^{2} \omega^{2}=\frac{1}{4} m \times \frac{2 \sigma}{p} \\
\therefore \quad m & =\frac{2 U p}{\sigma}=\frac{2 \times 54256 \times 1600}{1 \times 10^{9}} \\
& =0.174 \mathrm{~kg}
\end{aligned}
$$

COMMENTS:
Although many cordidates found correct expressions for the diving power a number failed to recognise that C_{D} and $C_{R R}$ were dimensionless. Some also thought that rolling resistance would scale with speed. Energy used in each phase of the dive cycle nos done well although some had difficulty with phase (3) (deceleration).
Mean power and erangy storage dove correctly by almat all. Flywheel sizing was dore very well by those who recalled their lecture notes, but less well by those who tried to derive on expression for stress.

