EG73, PART IB 2018

CRIB FOT 4C2:

DESIGNING WITH

COMPOSITES

NAFLECK JAN, 208

CRIBS

Question 1

(a)

$$\frac{v_{12}}{E_1} = \frac{v_{21}}{E_2} \Rightarrow v_{21} = 0.02461$$

Calculate [Q] in principal material axes (1, 2)

$$Q_{11} = \frac{E_1}{1 - \nu_{12}\nu_{21}} = \frac{76}{1 - 0.34 \times 0.02461} = 76.64 \text{ GPa}$$

$$Q_{22} = \frac{E_2}{1 - \nu_{12}\nu_{21}} = \frac{5.5}{1 - 0.34 \times 0.02461} = 5.54 \text{ GPa}$$

$$Q_{12} = \frac{v_{12} E_2}{1 - v_{12} v_{21}} = \frac{0.34 \times 5.5}{1 - 0.34 \times 0.02461} = 1.88 \text{ GPa}$$

$$Q_{66} = G_{12} = 2.3 \text{ GPa}$$
 $Q_{16} = Q_{26} = 0$

$$[Q] = \begin{bmatrix} 76.64 & 1.88 & 0 \\ 1.88 & 5.54 & 0 \\ 0 & 0 & 2.3 \end{bmatrix} GPa$$

(b) Calculate the transformed stiffness matrix [Q] in the global x-y axes. The transformed stiffness matrix for the $+30^{\circ}$ plies is given by

$$\begin{aligned} & \left(\overline{Q}_{11}\right)_{30^{\circ}} = 76.64 \ c^{4} + 5.54 \ s^{4} + 2 \left(1.88 + 2 \times 2.3\right) s^{2} c^{2} = 45.89 \ \text{GPa} \\ & \left(\overline{Q}_{12}\right)_{30^{\circ}} = \left(76.64 + 5.54 - 4 \times 2.3\right) s^{2} c^{2} + 1.88 \left(c^{4} + s^{4}\right) = 14.86 \ \text{GPa} \\ & \left(\overline{Q}_{22}\right)_{30^{\circ}} = 76.64 \ s^{4} + 5.54 \ c^{4} + 2 \left(1.88 + 2 \times 2.3\right) s^{2} c^{2} = 10.34 \ \text{GPa} \\ & \left(\overline{Q}_{16}\right)_{30^{\circ}} = \left(76.64 - 1.88 - 2 \times 2.3\right) c^{3} s - \left(5.54 - 1.88 - 2 \times 2.3\right) c \ s^{3} = 22.89 \ \text{GPa} \\ & \left(\overline{Q}_{26}\right)_{30^{\circ}} = \left(76.64 - 1.88 - 2 \times 2.3\right) c \ s^{3} - \left(5.54 - 1.88 - 2 \times 2.3\right) c^{3} s = 7.90 \ \text{GPa} \\ & \left(\overline{Q}_{66}\right)_{30^{\circ}} = \left(76.64 + 5.54 - 2 \times 1.88 - 2 \times 2.3\right) s^{2} c^{2} + 2.3 \left(s^{4} + c^{4}\right) = 15.28 \ \text{GPa} \\ & \text{where} \quad c = \cos 30, \ s = \sin 30 \end{aligned}$$

$$\begin{bmatrix} \overline{Q} \end{bmatrix}_{30^{\circ}} = \begin{bmatrix} 45.89 & 14.86 & 22.89 \\ 14.86 & 10.34 & 7.90 \\ 22.89 & 7.90 & 15.28 \end{bmatrix} GPa$$

The transformed lamina stiffness matrix [Q] for the -30° plies is given by

$$\begin{bmatrix} \overline{Q} \end{bmatrix}_{-30^{\circ}} = \begin{bmatrix} 45.89 & 14.86 & -22.89 \\ 14.86 & 10.34 & -7.90 \\ -22.89 & -7.90 & 15.28 \end{bmatrix} GPa$$

The transformed lamina stiffness matrix [Q] for the 90° plies is given by

The transformed lamina stiffness matrix [Q] for the 90° plies is given by

$$\begin{bmatrix} \overline{Q} \end{bmatrix}_{90^{\circ}} = \begin{bmatrix} 5.54 & 1.88 & 0 \\ 1.88 & 76.64 & 0 \\ 0 & 0 & 2.3 \end{bmatrix} GPa$$

Set t = 0.25 mm for lamina thickness

$$A_{16} = nt \cdot \left[\left(\overline{Q}_{16} \right)_{+30} + \left(\overline{Q}_{16} \right)_{-30} + \left(\overline{Q}_{16} \right)_{90} \right] = nt \cdot \left[22.89 - 22.89 + 0 \right] = 0$$

$$A_{26} = nt \cdot \left[\left(\overline{Q}_{26} \right)_{+30} + \left(\overline{Q}_{26} \right)_{-30} + \left(\overline{Q}_{26} \right)_{90} \right] = nt \cdot \left[7.90 - 7.90 + 0 \right] = 0$$

Since A_{16} = A_{26} =0. the laminate is balanced. This means that the laminate as whole does not exhibit any tensile-shear interactions. Tensile-shear interactions are tensile strains arising from applied shear stresses and visa versa and result in in-plane distortion of the laminate.

(c)

Similarly

$$\begin{split} A_{11} &= nt \cdot \left[\left(\overline{Q}_{11} \right)_{+30} + \left(\overline{Q}_{11} \right)_{-30} + \left(\overline{Q}_{11} \right)_{90} \right] = n \cdot 0.25 \cdot \left[45.89 + 45.89 + 5.54 \right] = 24.33 n \text{ MNm}^{-1} \\ A_{12} &= nt \cdot \left[\left(\overline{Q}_{12} \right)_{+30} + \left(\overline{Q}_{12} \right)_{-30} + \left(\overline{Q}_{12} \right)_{90} \right] = n \cdot 0.25 \cdot \left[14.86 + 14.86 + 1.88 \right] = 7.9 n \text{ MNm}^{-1} \\ A_{22} &= nt \cdot \left[\left(\overline{Q}_{22} \right)_{+30} + \left(\overline{Q}_{22} \right)_{-30} + \left(\overline{Q}_{22} \right)_{90} \right] = n \cdot 0.25 \cdot \left[10.34 + 10.34 + 76.64 \right] = 24.33 n \text{ MNm}^{-1} \\ A_{66} &= nt \cdot \left[\left(\overline{Q}_{66} \right)_{+30} + \left(\overline{Q}_{66} \right)_{-30} + \left(\overline{Q}_{66} \right)_{90} \right] = n \cdot 0.25 \cdot \left[15.28 + 15.28 + 2.3 \right] = 8.215 n \text{ MNm}^{-1} \end{split}$$

$$\begin{pmatrix} N_{x} \\ N_{y} \\ N_{xy} \end{pmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{pmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{pmatrix} = \begin{bmatrix} A_{11} & A_{12} & 0 \\ A_{21} & A_{22} & 0 \\ 0 & 0 & A_{66} \end{bmatrix} \begin{pmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{pmatrix}$$

$$N_x = N_y (\varepsilon_x = \varepsilon_y), N_{xy} = 0 \text{ since } \gamma_{xy} = 0$$

$$\therefore N_x = A_{11}\varepsilon_x + A_{12}\varepsilon_y = (A_{11} + A_{12})\varepsilon_x = (24.33n + 7.9n) \cdot (2.3 \times 10^{-3}) = 74.129n \text{ kNm}^{-1}$$

By balancing the forces exerted by the pressure and the stress

$$\pi R^2 P = 2\pi R N_{\star}$$

$$\Rightarrow N_x = \frac{PR}{2} = \frac{2 \cdot 0.5}{2} = 0.5 \text{ MPa} = 500 \text{ kN m}^{-1}$$

$$N_{\rm x}^{design} \ge N_{\rm x} = 500$$

$$74.129n \ge 500 \Rightarrow n \ge 6.74$$

 $\therefore n = 7$ is minimum value.

<u></u>	Q	2. (b) Poisson ralio for a unidirectional 0° ply or a 90° ply is almost zero. Poisson ratio for a ±45° liminate 13-1.
	Q2	Composites hand a low out - of - plane strugth and a low out - of - plane trugthness. Joints of the gueste out - of - plane stress. Also CFRP and CFFP have a low dutility in all directions and consequently only a limited amount of stress relaxation can occur at joints such as holes or loading pins or botts.
	Q2.	(d) Longitudinal tensile strength is fibre - dominated with little contribution from the matrix. Transverse tensile straight is matrix governed & voids can act as straig raisers.

23/402

Question 3

$$S_{11} = \frac{1}{E_1} = \frac{1}{39} = 0.025 \text{ GPa}^{-1}, \qquad S_{22} = \frac{1}{E_2} = \frac{1}{8.3} = 0.12 \text{ GPa}^{-1},$$

$$S_{12} = -\frac{V_{12}}{E_1} = -\frac{0.3}{39} = -0.0076 \text{ GPa}^{-1}, \qquad S_{66} = \frac{1}{G_{12}} = \frac{1}{4.1} = 0.24 \text{ GPa}^{-1}$$

$$[S] = \begin{bmatrix} 0.025 & -0.0076 & 0 \\ -0.0076 & 0.12 & 0 \\ 0 & 0.0076 & 0.24 \end{bmatrix} \text{ GPa}^{-1}$$

(ii) From Datasheet

$$\overline{S}_{11} = S_{11}c^4 + S_{22}s^4 + (2S_{12} + S_{66})c^2s^2$$

so that, for $\phi = 25^{\circ}$.

$$\overline{S}_{11} = 0.025\cos^4(25) + 0.12\sin^4(25) + (0.24 - 0.0152)\cos^2(25)\sin^2(25) = 0.054 \text{ GPa}^{-1}$$

This is about twice the on-axis value (= 0.025 GPa⁻¹ at $\phi = 0^{\circ}$).

The maximum value of \overline{S}_{11} is found from the condition

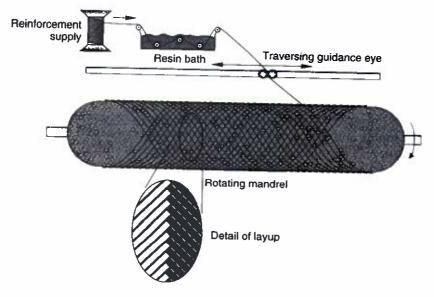
$$\frac{\partial \overline{S}_{11}}{\partial \phi} = -S_{11} 4c^3 s + S_{22} 4s^3 c + (2S_{12} + S_{66})(-2cs^3 + 2sc^3) = 0$$
c = 0 or s = 0 implies
zeros at 0 and 90 degrees (min and max)

Divide through by 4cs

$$\frac{\partial \overline{S}_{11}}{\partial \phi} = -S_{11}c^2 + S_{22}s^2 + (2S_{12} + S_{66})\left(\frac{-s^2 + c^2}{2}\right) = 0$$

$$\therefore c^2 = \frac{S_{12} - S_{22} + \frac{S_{66}}{2}}{-S_{11} - S_{22} + 2S_{12} + S_{66}}$$
 (after substituting for $s^2 = 1 - c^2$)

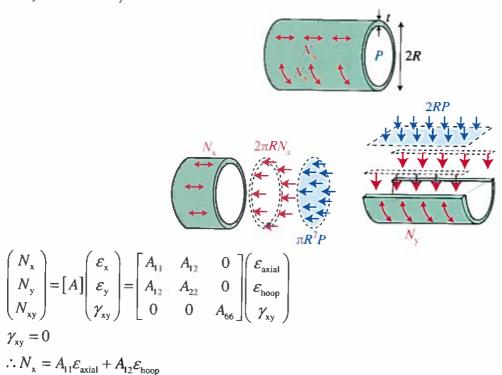
$$= \frac{-0.0076 - 0.12 + \frac{0.24}{2}}{-0.025 - 0.12 - 2 \cdot 0.0076 + 0.24} = \frac{0.0076}{0.0798} = 0.095$$


This should be -0.095, so no maximum between 0 and 90

∴
$$c = 0.3$$
, ie $\phi = 72^{\circ}$

$$\overline{S}_{11} = 0.025\cos^4(72) + 0.12\sin^4(72) + (0.24 - 0.0152)\cos^2(72)\sin^2(72) = 0.12 \text{ GPa}^{-1}$$

(b) (i) Filament winding is a process suited to automation, although limited to certain components shapes (tubes). Fibre tows i.e. bundles of fibres, are drawn through a bath of resin, before wound onto a mandrel or former of the required shape.


The process involves: (a) A creel stand, from which the fibre tows are fed under the required tension from a set of reels. (b) A bath of resin, through which the fibre tows pass via a set of guides. (c) A delivery eye, through which the fibres emerge, the position of which is controlled by a mechanical system and (d) a rotating mandrel onto which the fibre tows are drawn. The key parameters are the fibre tension, the resin take-up efficiency and the winding geometry.

(ii) Applying a force balance between the force exerted by the pressure and the stresses in the wall gives

$$\pi R^2 P = 2\pi R N_x \Rightarrow N_x = \frac{PR}{2}$$

 $2N_y = 2RP \Rightarrow N_y = PR$

 $N_{\rm y} = A_{12} \varepsilon_{\rm axial} + A_{22} \varepsilon_{\rm hoop}$

The transformed stiffness matrix for the ±60° plies is given by

$$\begin{split} &\left(\overline{Q}_{11}\right)_{60^{\circ}} = \left(\overline{Q}_{11}\right)_{-60^{\circ}} = 39.76 \ c^4 + 8.46 \ s^4 + 2 \left(2.54 + 2 \times 4.1\right) s^2 c^2 = 11.27 \ \text{GPa} \\ &\left(\overline{Q}_{12}\right)_{60^{\circ}} = \left(\overline{Q}_{12}\right)_{-60^{\circ}} = \left(39.76 + 8.46 - 4 \times 4.1\right) s^2 c^2 + 2.54 \left(c^4 + s^4\right) = 7.55 \ \text{GPa} \\ &\left(\overline{Q}_{22}\right)_{60^{\circ}} = \left(\overline{Q}_{22}\right)_{-60^{\circ}} = 39.76 \ s^4 + 8.46 \ c^4 + 2 \left(2.54 + 2 \times 4.1\right) s^2 c^2 = 26.92 \ \text{GPa} \\ &\text{where} \ \ c = \cos 60, \ s = \sin 60 \end{split}$$

If t is the wall thickness

$$A_{11} = \frac{t}{2} \left(\overline{Q}_{11} \right)_{60} + \frac{t}{2} \left(\overline{Q}_{11} \right)_{-60} = 11.27 \ t$$

$$A_{12} = \frac{t}{2} \left(\overline{Q}_{12} \right)_{60} + \frac{t}{2} \left(\overline{Q}_{12} \right)_{-60} = 7.55 \ t$$

$$A_{22} = \frac{t}{2} \left(\overline{Q}_{22} \right)_{60} + \frac{t}{2} \left(\overline{Q}_{22} \right)_{-60} = 26.92 \ t$$

Therefore

$$N_{x} = \frac{PR}{2} = \left(11.27\varepsilon_{\text{axial}} + 7.55\varepsilon_{\text{hoop}}\right)t \quad (1)$$

$$N_{\rm y} = PR = (7.55\varepsilon_{\rm axial} + 26.92\varepsilon_{\rm hoop})t$$
 (2)

$$\therefore \frac{(1)}{(2)} \qquad \frac{1}{2} = \frac{11.27\varepsilon_{\text{axial}} + 7.55\varepsilon_{\text{hoop}}}{7.55\varepsilon_{\text{axial}} + 26.92\varepsilon_{\text{hoop}}} = \frac{11.27\left(\varepsilon_{\text{axial}}/\varepsilon_{\text{hoop}}\right) + 7.55}{7.55\left(\varepsilon_{\text{axial}}/\varepsilon_{\text{hoop}}\right) + 26.92}$$

$$\frac{\varepsilon_{\text{axia}}}{\varepsilon_{\text{hoon}}} = \frac{11.82}{14.99} = 0.79$$

4. A) Och Ty for compressive failure by fibie nicrobushling, where Ty is the shear yield strength and \$ is the fibre misalgnment The toughness of a lamina is due to fibie pull - out from the matrix. $RO \longrightarrow O_{p} \qquad \pi \alpha^{2} G_{p} = 2 \pi \alpha T_{y} l$ $-l - l - \alpha O_{p}$ $\frac{\alpha}{2} T_{y}$ where a = fibre radius, and of = fibre thistle strength, zr = matrix sheer strength Tougher Scales with \(\frac{1}{2} \tag{Top.} l \), so a high ty leads to a low toughters.

4. (b) (i) $N_{x} = \sigma_{i}^{\infty} \cdot t$ $N_{y} = 0$ $N_{xy} = 0$ $M_{x} = M_{y} = M_{xy} = 0$ $\begin{pmatrix} \mathcal{E}_{x}^{\circ} \\ \mathcal{E}_{y}^{\circ} \end{pmatrix} = \begin{pmatrix} A^{-1} \\ A^{-1} \\ N_{xy} \end{pmatrix}$ Write or = 1 oref where Oref = 1 Ora Then $\mathcal{E}_{x}^{\circ} = 0.0135 \, N_{x} = 0.0135 \, \lambda \, (o_{nf} \, t)$ $\mathcal{E}_{y}^{\circ} = -0.0005 \, N_{x} = -0.0005 \, \lambda \, (o_{nf} \, t)$ $\mathcal{X}_{y}^{\circ} = 0$ Stran allowables: et = 1.448 = 0.0105 e_ = - 1.172 = -0.0085 et = 48.3 = 0.00537 9000 $e_{7}^{-} = -248 = -0.0276$ 9000

Q4 (b) (1) contal. 0° ply: EL = 0.0135 A = 0.0105 => 1=0.778 E7 = -0.0005 / = -0.0276 => 1= 55.2 90° ply $E_L = -0.0005\lambda = -0.0085 \Rightarrow \lambda = 17$ $E_T = 0.0135\lambda = 0.00537 \Rightarrow \lambda = 0.4$ So, first failure occurs in the bransverse direction of the 90° plies at 0,00 400 MPa Q4. (b) (ii) (o) = [Q] (E°) 0° ply: $O_{1} = Q_{11} \mathcal{E}_{x}^{\circ} + Q_{12} \mathcal{E}_{y}^{\circ}$ = $(139 \times 0.0135 - 2.7 \times 0.0005) \lambda$ = 1.88λ O2 = Q21 εx + Q22 εy = 0.032 λ 90° ply 8 0 = Q1, 8° + Q2 Ex = -0.0321 02 = Q12 E° + Q22 Ex = 0.121 chech: 1/2 0, (0 ply) + 1/2 02 (90° ply) =) 12 02 (0° ply) + 12 0, (90° ply) = 0 0° ply ° 01 - 1.88 / = 1.30 / 02 = 0.66 / 3t 1.448 St So, first failure occurs in the bronsverse direction of the 900 plies at $\overline{\sigma}_{1}^{\infty} = 400 \,\mathrm{Mpa}$ (Some value on for max. strain without, such is the Simple loading).

Q1. Extensional stiffness of laminates, and application to stress analysis.

Most candidates showed a good understanding of laminate plate theory and of the notion of a balanced laminate. Many could so the matrix manipulations without error. A surprisingly large number of candidates treated the spherical pressure vessel as a circular cylindrical pressure vessel.

Overall, the candidates found this a straightforward question, and obtained a high average mark.

Q2. Qualitative questions on properties of laminates.

Candidates showed a general appreciation of the main issues, but many attempts lacked sufficient detail. Few drew sketches or made quantitative references. Overall, the answers were somewhat vague.

Q3. Pressure vessel stress analysis for a filament wound pressure vessel.

Most candidates knew how to manipulate the compliance of a lamina due to rotation of axes. A surprisingly large number struggled to obtain the most compliant orientation of a lamina. There was an excellent understanding of the process of filament winding, but a mixed understanding of how to obtain the strain ratio in the axial and hoop directions.

Q4. Failure of laminates.

Most candidates understood the main ideas behind the various failure criteria. The first part on compressive failure by microbuckling and fibre pull-out were well done. Marks were lost in part (b) by candidates not setting out the various possibilities of which failure mode dominated.