۱

(a)
$$x \in Ut \Rightarrow V(H \in u(Vt) \Rightarrow E[V(Hv(H+T)] \in E[u(Vt)u(Ut+VT)]$$

T
 T
 $Uhu displatement$
 $R_{UV}(T) = Ae^{-\alpha V(T)}$
 $S_{UV}(u) \stackrel{t}{2\pi} \int_{-\alpha}^{\alpha} e^{iuT} Ae^{-\alpha V(T)} dT = \frac{A}{2\pi} \left\{ \int_{0}^{\infty} e^{iuT - \alpha VT} dT + \int_{-\alpha}^{0} e^{iuT + \alpha VT} dT \right\}$
 $= \frac{A}{2\pi} \left\{ \int_{0}^{\infty} e^{iuT - \alpha VT} dT + \int_{-\alpha}^{0} e^{iuT + \alpha VT} dT \right\}$
 $= \frac{A}{2\pi} \left\{ \frac{1}{iu + \alpha V} - \frac{1}{iu^{2} - \alpha V} \right\} = \frac{A}{\pi} \left\{ \frac{\alpha V}{u^{2} + \alpha^{2} U^{2}} \right\}$ [25%]
(b) By inspection $M \ddot{y} + c(\dot{y} - \dot{y}) + k(\dot{y} - \dot{y}) = 0$
Pat $\Gamma = y - v$, idative displatement
 $\Rightarrow M \ddot{r} + C \dot{r} + kr = M \ddot{v}$

Assume $\Gamma = \Gamma(\omega)e^{i\omega t}$ and $\sigma = \sigma(\omega)e^{i\omega t}$ to give $\Gamma(\omega) = \left(\frac{-M\omega^{2}}{-M\omega^{2} + Ci\omega + k}\right)\sigma(\omega) = H(\omega)\sigma(\omega)$ $\Gamma(\omega) = \int_{\Gamma(\omega)}^{\infty} \frac{1}{\Gamma(\omega)} \int$

$$= \int_{\Gamma} \int_{\Gamma} \int_{\Gamma} \int_{\Gamma} \left[H(\omega) \right]^{2} \int_{\sigma} \int_{\sigma} \int_{\Gamma} \int_{\Gamma}$$

Assume broad banded \Rightarrow Replace with white noise at the resonant frequency $S_{0} = \frac{H}{TT} \left\{ \frac{M^{2} w_{n}^{5} \alpha V}{w_{n}^{2} + \alpha^{2} V^{2}} \right\}$ From data sheet $\sigma_{T}^{2} = \frac{TTS_{0}}{Ck} = \sigma_{F}^{2} \cdot k^{2} \sigma_{T}^{2} = TTkS_{0}/C$ Nothing that $M^{2} w_{n}^{4} = k^{2}$, then $\sigma_{F}^{2} = \frac{H}{C} \left\{ \frac{k^{3} \alpha V}{w_{n}^{2} + \alpha^{2} V^{2}} \right\}$ [25%]

(d) from port (b), if
$$M \rightarrow \infty$$
 then $H(\omega) \rightarrow 1$ and $SH(\omega) \rightarrow k^2 SHr(\omega)$
This Makes sense, because the mass will not move as $M \rightarrow \omega$ and we
will have $\Gamma(H) \cdot \sigma(H)$. In this case $\sigma_F^2 : k^2 \sigma_F^2 : \frac{k^2 A}{2}$

White noise approximation breaks down because H(w)=1 is very broad and the input spectrum cannot be broader than this! E20%]

2.(a)

$$\int \frac{1}{2} \frac{y(t)}{1} \qquad fut \quad r : x(t) - y(t)$$

$$\int \frac{1}{2} \frac{y(t)}{1} \qquad fut \quad r : x(t) \quad \alpha(cur \ ir \quad r^{2}d \Rightarrow hucl \ (rossing problem)$$

$$r^{2} : x^{2} - 2xy + y^{2} \Rightarrow \sigma_{r}^{2} : \sigma_{x}^{2} + \sigma_{y}^{2} : \sigma_{r}^{2} + \sigma_{r}^{2} : \frac{1}{2} + 27y^{2} : 9760$$

$$\Rightarrow \sigma_{r}^{2} : 1 \qquad \text{and} \quad \sigma_{r}^{2} : 279.9$$

$$V_{d}^{T} : \frac{1}{2\pi} \left(\frac{\sigma_{r}}{\sigma_{r}}\right) = \frac{1}{2} \frac{y(d)\sigma_{r}}{2} : \left(\frac{1}{2\pi}\right) \left(\frac{299}{1}\right) = \frac{1}{2} \frac{y(5/1)^{2}}{2} : (.779 \times 10^{-6})$$

$$Robability \quad di \ impact = 1 - e^{-V_{d}T} = 1 - e^{-1.779 \times 10^{-6}} \times 3\times60 = 0.0315$$

$$[30\%]$$
(b) Excitation broad banded $\Rightarrow (ropanse similar fo the response of an oscillator to white noise
from the data sheet $\sigma_{x}^{-2} : \frac{1150}{Ck}, \quad \sigma_{x}^{-2} : \frac{1150}{Ch} \Rightarrow m.s.$ response $\sigma(\frac{1}{C})$

$$Double damping \Rightarrow \sigma_{r} \to 1/\sqrt{2}$$$

 $J_{4}^{\dagger} = (\frac{1}{2\pi})(\frac{299}{1})e^{\frac{5}{2}(\sqrt{2}\times5)^{2}} = 6.63\times10^{-10}$ $P = 1 - e^{-\sqrt{3}T} = 1 - e^{-6.63\times10^{-10}\times3\times60} = 1.19\times10^{-7}$ [35%]
This is a reasonable probability of Failure

(c) From the data sheet
$$D : V_0^* T \in [1/N(s_1)]$$
; $N(s) : good s^{-1}$
 $\int_{0}^{\infty} \frac{1}{N(s_1)} \frac{1}{good} \frac{0.3}{good} \times b$
 $\int_{0}^{\infty} \frac{1}{N(s_1)} \frac{1}{p(b)} db$
 $p(ak distribution) = \frac{b}{C_r} = \frac{b}{2} (b/\sigma_r)^2$
From data sheet
So $D : V_0^* T \left(\frac{a.3}{yodd} \frac{0}{\sigma_r^2}\right) \int_{0}^{\infty} b^2 e^{\frac{b}{2} (b/\sigma_r)^2} db$
 $\frac{1}{2 \times \sqrt{2\pi} \times \sigma_r^3}$
So $D : \left(\frac{1}{2\pi}\right) \left(\frac{\sigma_r}{\sigma_r}\right) T \left(\frac{a.3}{yodd}\right) \int_{2}^{\pi} \sigma_r$
 $= \left(\frac{1}{2\pi}\right) \left(\frac{122}{0.6}\right) 3 \times 60 \left(\frac{0.3}{yodd}\right) \int_{2}^{\pi} \frac{\sigma_r}{2} \times 0.6 = \frac{\sigma_r}{2} \frac{\sigma_r}{2} \frac{\sigma_r}{2} \frac{\sigma_r}{2} \frac{\sigma_r}{2}$
[35%]

This is too high because a factor of safety of between k and 5 must be applied.

3.(a)

$$= \frac{d}{dt} \begin{pmatrix} x \\ z \end{pmatrix}$$
, $\begin{pmatrix} z \\ 3\xi z - x + 8\xi z z^{4} \end{pmatrix} = equilibrium point at (0,0)$

Consider stability by looking at Molian around (0,0)

$$\frac{1}{dt}\begin{pmatrix} x \\ i \end{pmatrix} : \begin{pmatrix} 0 & 1 \\ -1 & 3E \end{pmatrix} \begin{pmatrix} x \\ i \end{pmatrix}$$
Assume dependency $e^{\lambda t} \Rightarrow \begin{pmatrix} -\lambda & 1 \\ -1 & 3E^{-\lambda} \end{pmatrix} = 0$

$$\Rightarrow -\lambda(3E^{-}\lambda) + 1 = 0 \Rightarrow \lambda^{2} - 3E\lambda + 1 = 0$$

$$\Rightarrow \lambda = \frac{1}{2} \left\{ 3E \pm \int 9E^{2} - \frac{1}{2} \right\} \Rightarrow (orijugate pair with form the positive positive real port positive $= \frac{1}{2} \frac{$$$

 $3_{8} + \frac{1}{2} \cos 2t + \frac{1}{8} \cos 4t - \frac{1}{16} (1 + 2 \cos 2t + \frac{1}{2} + \frac{1}{2} \cos 4t)$

$$\vec{x}_{1} + x_{1} = -3A\varepsilon \sinh + 8\varepsilon A^{s} \left[\frac{3}{4} \sinh + \frac{1}{2} (\cos 2t \sinh + \frac{1}{4} \cos 4t \sinh t) \right]$$

$$= \left(-3A\varepsilon + \frac{3}{5} \varepsilon A^{s} \right) \sinh + 8\varepsilon A^{s} \left[\frac{4}{5} \sin 3t - \frac{1}{5} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \varepsilon A^{s} \right) \sinh + 8\varepsilon A^{s} \left[\frac{3}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \varepsilon A^{s} \right) \sinh + 8\varepsilon A^{s} \left[\frac{3}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \varepsilon A^{s} \right) \sinh + 8\varepsilon A^{s} \left[\frac{3}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \varepsilon A^{s} \right) \sinh + 8\varepsilon A^{s} \left[\frac{3}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \varepsilon A^{s} \right) \sinh + 8\varepsilon A^{s} \left[\frac{3}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \varepsilon A^{s} \right) \sinh + 8\varepsilon A^{s} \left[\frac{3}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \varepsilon A^{s} \right) \sinh + 8\varepsilon A^{s} \left[\frac{3}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \varepsilon A^{s} \right) \sinh + 8\varepsilon A^{s} \left[\frac{3}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \varepsilon A^{s} \right) \sinh + 8\varepsilon A^{s} \left[\frac{3}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \varepsilon A^{s} \right) \sinh + 8\varepsilon A^{s} \left[\frac{3}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \varepsilon A^{s} \right) \sinh + 8\varepsilon A^{s} \left[\frac{3}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \varepsilon A^{s} \right) \sinh + 8\varepsilon A^{s} \left[\frac{4}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \varepsilon A^{s} \right) \sinh + 8\varepsilon A^{s} \left[\frac{4}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \varepsilon A^{s} \right) \sinh + 8\varepsilon A^{s} \left[\frac{4}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \varepsilon A^{s} \right) \sinh + 8\varepsilon A^{s} \left[\frac{4}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \varepsilon A^{s} \right) \sinh + 8\varepsilon A^{s} \left[\frac{4}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \frac{1}{16} \sin 3t + \frac{1}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \frac{1}{16} \sin 3t + \frac{1}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \frac{1}{16} \sin 3t + \frac{1}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \frac{1}{16} \sin 3t + \frac{1}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \frac{1}{16} \sin 3t + \frac{1}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \frac{1}{16} \sin 3t + \frac{1}{16} \sin 3t + \frac{1}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \frac{1}{16} \sin 3t \right]$$

$$= \left(-3A\varepsilon + \frac{1}{16} \sin 3t + \frac{1}{16} \sin 3t + \frac{1}{16} \sin 3t + \frac{1}{16} \sin 3t \right]$$

(c)

4. a)
$$\bar{x} + p^2 x + p x^3 = k \cos \omega t$$

For describing Function
$$\int_{0}^{T} \mu x^{3} x x dt = \int_{0}^{T} 0 x x x dt$$
 with $x \cdot A \cos t$
 $\Rightarrow \mu A^{4} \int_{0}^{T} (\cos^{4} t) t dt : DA^{2} \int_{0}^{T} \cos^{2} t t dt$
 $\mu A^{4} \int_{0}^{T} [\frac{1}{2}(1 + \cos t)]^{2} dt + \frac{1}{2} 20A^{2}T$
 $\mu A^{4} \int_{0}^{T} [\frac{1}{2} + \frac{1}{2} \cos t t + \frac{1}{2} \cos^{2} t t] dt = \frac{1}{2} 20A^{2}T$
 $\Rightarrow \tau \mu A^{4} [\frac{1}{2} + \frac{1}{2}] \cdot \frac{1}{2} OA^{2}T \Rightarrow D = \frac{3}{4} \mu A^{2}$

$$\Rightarrow (-\omega^2 + \beta^2 + 3(\gamma R^2) A \cdot k$$
 [30%]

b)
$$\overline{a} + \frac{b^2 x + \mu \lambda^3}{s} + \frac{b^2 x +$$

=
$$\frac{1}{10} + (\frac{1}{10} + 3\frac{1}{10} + 3\frac{1}{10}) = 0$$
 [20%]

c)
$$\lambda_0 \cdot A \cos \omega t \Rightarrow \tilde{\omega} \cdot (\dot{p}^2 + 3NA^2 \cos^2 \omega t) \omega \cdot 0$$

$$\Rightarrow \tilde{\omega} \cdot (\dot{p}^2 + 3\chi_{P}A^2 + 3\chi_{P}A^2 \cos 2\omega t) \omega \cdot 0$$

$$\Rightarrow \frac{\tilde{\omega} + (\dot{p}^2 + \varepsilon \cos n t) \omega \cdot 0}{\tilde{\omega} + (\dot{p}^2 + \varepsilon \cos n t) \omega \cdot 0} \leftarrow Mathicu equalisn$$

$$\rho^2 : \dot{p}^2 + 3\chi_{P}A^2 \quad \varepsilon : 3\chi_{P}A^2 \quad \Lambda \cdot 2\omega$$

First order approximation $\ddot{u} + P^2 u = 0$ $\Rightarrow u_0 = A \cos Pt$ Second order approximation $\ddot{u}_1 + P^2 u_1 = -\epsilon A \cos \Omega t \cos Pt$ $= -\frac{\epsilon A}{2} \left[\cos(\Omega + P)t + \cos(\Omega - P)t \right]$ Resonance when $P = \Lambda + P \Rightarrow$ not a physical solution $\sigma e = \Omega - P \Rightarrow \Lambda + 2P$

In the present case $2W^2 2\sqrt{b^2 + 3/2}NA^2$ $\Rightarrow U^3 \sqrt{b^2 + 3/2}NA^2$

[50%]

4C7: Examiner's comments:

Q1 Spectral analysis of vehicle dynamics

No major conceptual difficulties were evident, and the question was generally answered well.

Q2 Circuit board impact and fatigue

Parts (a) and (b), concerning crossing-rates and the probability of impact, were well done. In Part (c), concerning fatigue damage, only one of the 17 students who attempted the question obtained the correct numerical answer. A common error was to use a Gaussian distribution for the stress peaks, instead of a Rayleigh distribution.

Q3 Limit cycle oscillations

Part (a) was very well done, but the detailed algebra (trigonometry) in section (b) defeated many students. Most students made a reasonable attempt at the phase plane portrait in Part (c), even if Part (b) had not been completed.

Q4 Mathieu equation

This was the least popular question (8 attempts), although the average mark was reasonably good (60%). Part (b) was not well done, which was surprising given that the target formula was given on the exam paper and the question involved a straight forward substitution followed by the neglect of small terms.