Random and Non-lineas Vibrations - Cribs 209

1. (a)

$$
\begin{aligned}
x=v t \Rightarrow v(H)=u(v t) \Rightarrow E[v(H v(t+T)] & =E[u(v t) u(v t+v T)] \\
& =\operatorname{Ran}(v T)
\end{aligned}
$$

whee displacement

$$
R_{v v}(\tau)=A e^{-\alpha V(\tau)}
$$

$$
\begin{align*}
S_{v v}(\omega) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i \omega T} A e^{-\alpha V(T)} d T \\
& =\frac{A}{2 \pi}\left\{\int_{0}^{\infty} e^{-i \omega T-\alpha V T} d T+\int_{-\infty}^{0} e^{-i \omega T+\alpha V T} d T\right\} \\
& =\frac{A}{2 \pi}\left\{\frac{1}{i \omega+\alpha V}-\frac{1}{i \omega-\alpha V}\right\}=\frac{A}{\pi}\left\{\frac{\alpha V}{\omega^{2}+\alpha^{2} V^{2}}\right\}
\end{align*}
$$

(b) By inspection $M \ddot{y}+C(\dot{y}-i v)+k(y-v)=0$

Put $r=y-v$, relative displacement

$$
\Rightarrow M \ddot{r}+C \dot{r}+k r=M \ddot{r}
$$

Assume $r=r(\omega) e^{i \omega t}$ and $v=v(\omega) e^{i u t}$ to give

$$
r(w):\left(\frac{-M \omega^{2}}{-M \omega^{2}+C i \omega+k}\right) v(w)={ }_{T}^{H(w) v(w)}
$$

frequency response Function

$$
\Rightarrow \quad S_{r r}(\omega):|H(\omega)|^{2} S_{o v}(\omega)
$$

Spring force $F: k e \Rightarrow S_{f p}(\omega) ; k^{2}|H(\omega)|^{2} S_{\text {fou }}(\omega)$
(c)

$$
\begin{aligned}
M \ddot{r}+C \dot{r}+k r & =M \ddot{v} \\
& \stackrel{\downarrow}{\text { spectrum }}=
\end{aligned}
$$

Assume broad banded \Rightarrow Replace with whit noise at the ribonant Frequency

$$
S_{\partial}=\frac{A}{\pi}\left\{\frac{M^{2} \omega_{n}^{6} \alpha V}{\omega_{n}^{2}+\alpha^{2} V^{2}}\right\}
$$

From data sheet $\sigma_{\rho}^{2}=\frac{\pi s_{0}}{c k} \quad \sigma_{F}^{2}=k^{2} \sigma_{r}^{2}=\pi k s_{0} / c$
Noting that $M^{2} w_{n}^{4}=k^{2}$, then

$$
\sigma_{F}^{2}=\frac{A}{C}\left\{\frac{k^{3} \alpha V}{w n^{2}+\alpha^{2} V^{2}}\right\}
$$

(d) from port (b), if $M \rightarrow \infty$ then $H(\omega) \rightarrow 1$ and $S_{\text {FF }}(\omega) \rightarrow k^{2} S_{\text {sr r }}(\omega)$ This makes scone, because the mass will not move as $M \rightarrow \infty$ and we will have $r(t): v(t)$. In this case $\sigma_{p}^{2}=k^{2} \sigma_{q}^{2}=k^{2} A$

White noise approximation breaks down because $H(\omega)=1$ is very broad and the input spectrum cannot be broader than this!
2.(a)
$p y(t)$ Put $r=x(t)-y(t)$
$d \sqrt{\frac{p x(t)}{1 m p a c t ~ w i l l ~ o c c u r ~ i f ~} r \geqslant d \Rightarrow \text { level crossing problem }}$

$$
\begin{gathered}
r^{2}=x^{2}-2 x y+y^{2} \Rightarrow \sigma_{r}^{2}=\sigma_{x}^{2}+\sigma_{y}^{2}=0.6^{2}+0.8^{2}=1 \\
\dot{r}^{2}=\dot{x}^{2}-2 \dot{x} y+\dot{y}^{2} \Rightarrow \sigma_{i}^{2}=\sigma_{\dot{x}}^{2}+\sigma_{y}^{2}=122^{2}+274^{2}=89960 \\
\Rightarrow \quad \sigma_{r}=1 \quad \text { and } \quad \sigma_{i}=299.9 \\
V_{d}^{+}=\frac{1}{2 \pi}\left(\frac{\sigma_{i}}{\sigma_{r}}\right) e^{-\frac{1}{2}\left(d / \sigma_{r}\right)^{2}}=\left(\frac{1}{2 \pi}\right)\left(\frac{299}{1}\right) e^{-\xi(5 / 1)^{2}}=1.779 \times 10^{-6} \\
\text { Probability of impact }=1-e^{-v_{d}^{+} T}=1-e^{-1.779 \times 10^{-4} \times 3 \times 60}=0.0315
\end{gathered}
$$

[30\%]
(b) Excitalion broadbanded \Rightarrow cisponse similar to the risponses of an osillater to white noise

From the data shect $\sigma_{x}^{2}, \frac{\pi S_{0}}{C k}, \sigma_{i}^{2}, \frac{\pi S_{0}}{C M} \Rightarrow$ M.S. risponse $\alpha\left(\frac{1}{C}\right)$

$$
\begin{align*}
\text { Doubk danping } \Rightarrow \sigma_{r} & \rightarrow 1 / \sqrt{2} \\
\sigma_{i} & \rightarrow 299.9 / \sqrt{2} \\
\Rightarrow V_{d}^{+} & =\left(\frac{1}{2 \pi}\right)\left(\frac{299}{1}\right) e^{-\frac{1}{2}(\sqrt{2} \times 5)^{2}}=6.63 \times 10^{-10} \\
p & =1-e^{-v_{d}^{+} T}=1-e^{-6.63 \times 10^{-10} \times 3 \times 60}=1.19 \times 10^{-7}
\end{align*}
$$

This is a reasonable probability of fallure
(C) From the data sheet $D: V_{d}^{r} T E[1 / N(s)] ; N(S)=40005^{-1}$

$$
\begin{aligned}
& \downarrow \\
& \int_{0}^{\infty} \frac{1}{N}(s) p(b) d b \\
& \downarrow \\
& \text { peak distribution }=\frac{b}{\sigma_{r}^{2}} e^{-\frac{1}{2}\left(b / \sigma_{r}\right)^{2}}
\end{aligned}
$$

from data sheet

$$
\text { So } \quad D=V_{d}^{+} T\left(\frac{0.3}{4000 \sigma_{r}^{2}}\right) \underbrace{\int_{0}^{\infty} b^{2} e^{-\frac{1}{2}\left(b / \sigma_{r}\right)^{2}} d b}_{\frac{1}{2} \times \sqrt{2 \pi} \times \sigma_{r}^{3}}
$$ used a Gaussian distribution hare by

So

$$
\begin{align*}
0 & =\left(\frac{1}{2 \pi}\right)\left(\frac{\sigma_{r}}{\sigma_{r}}\right) T\left(\frac{0.3}{4000}\right) \sqrt{\frac{\pi}{2}} \sigma_{r} \\
& =\left(\frac{1}{2 \pi}\right)\left(\frac{122}{0.6}\right) 3 \times 60\left(\frac{0.3}{4000}\right) \sqrt{\frac{\pi}{2}} \times 0.6=0.3285
\end{align*}
$$

This is too high because a Factor of safety of between 4 and 5 must be applied.
3.(a)

$$
\begin{aligned}
& \dot{a}-\varepsilon \dot{a}\left(3-8 x^{4}\right)+x=0 \\
\Rightarrow & \frac{d}{d t}\binom{x}{\dot{x}}:\binom{\dot{\alpha}}{3 \sum \dot{\alpha}-x+8 \sum \dot{a} x^{4}} \Rightarrow \text { equilibrium point at }(0,0)
\end{aligned}
$$

Consider stability by looking at motion around $(0,0)$

$$
\frac{d}{d t}\binom{x}{\dot{x}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 3 \Sigma
\end{array}\right)\binom{\lambda}{\dot{j}}
$$

Assume dependency $e^{\lambda t} \Rightarrow\left|\begin{array}{cc}-\lambda & 1 \\ -1 & 3 \varepsilon-\lambda\end{array}\right|=0$

$$
\begin{aligned}
\Rightarrow \quad-\lambda(3 \Sigma-\lambda)+1: 0 \Rightarrow \lambda^{2}-3 \varepsilon \lambda+1 & =0 \\
\Rightarrow \quad \lambda=\frac{1}{2}\left\{3 \varepsilon \pm \sqrt{9 \varepsilon^{2}-4}\right\} & \Rightarrow \text { conjugate pair with } \\
\uparrow \quad \uparrow \text { complex } & \\
& \text { posilive real part } \\
& \Rightarrow \text { unstable focus }
\end{aligned}
$$

(b) $\bar{x}+x=\left[\dot{x}\left(3-8 y^{4}\right)\right.$
zero order solution $\ddot{x}_{0}+x_{0}=0 \Rightarrow x_{0}=A$ cost
Inst order solution $\ddot{x}_{1}+x_{1}=-A \varepsilon \sin t\left(3-8 A^{*} \cos ^{4} t\right)$

$$
\begin{aligned}
& \downarrow \\
& \text { 有 }(1+\cos 2 t)^{2} \\
& \frac{\downarrow}{4}\left(1+2 \cos 2 t+\cos ^{2} 2 t\right) \\
& 3 / 8+\frac{1}{2} \cos 2 t+\frac{1}{8} \cos 4 t \leftarrow \quad \frac{1}{4}\left(1+2 \cos 2 t+\frac{4}{2}+\frac{4}{2} \cos 4 t\right)
\end{aligned}
$$

$$
\begin{aligned}
\ddot{x}_{1}+\lambda_{1}= & -3 A \sum \sin t+8 \sum A^{5}\left[3 / 8 \sin t+\frac{1}{2} \cos 2 t \sin t+\frac{1}{8} \cos 4 t \sin t\right] \\
= & \left(-3 A \Sigma+3 \varepsilon A^{5}\right) \sin t+8 \sum A^{5}\left[\frac{1}{4} \sin 3 t-\frac{1}{4} \sin t\right. \\
& \left.+1 / 16 \sin 5 t-\frac{1}{16} \sin 3 t\right] \\
= & \underbrace{\left(-3 A \varepsilon+\left[A^{5}\right) \sin t+8 \sum A^{5}[3 / 16 \sin 3 t+1 / 16 \sin 5 t]\right.}_{\text {To avad risonance naed } A^{4}, 3}
\end{aligned}
$$

Then $\ddot{x}_{1}+x_{1}=\frac{1}{2}\left[A^{5}[3 \sin 3 t+\sin 5 t]\right.$

$$
\Rightarrow \quad x_{1}{ }^{\prime} \frac{4}{2} \varepsilon A^{S}\left[\frac{-3}{8} \sin 3 t-\frac{1}{24} \sin 5 t\right]
$$

(c)

4. a) $\quad \ddot{x}+p^{2} x+\mu x^{3}=k \cos \omega t$

For deseribing funcion $\int_{0}^{T} \mu x^{3} \times x d t=\int_{0}^{T} 0 x \times x d t$ with $x^{\text {" } A \text { cosut }}$

$$
\begin{align*}
\Rightarrow & \mu A^{4} \int_{0}^{T} \cos 4 \omega t d t: D A^{2} \int_{0}^{T} \cos ^{2} \omega t d t \\
& \mu A^{4} \int_{0}^{T}\left[\frac{1}{2}(1+\cos 2 \omega t)\right]^{2} d t=\frac{1}{2} D A^{2} T \\
& \mu A^{4} \int_{0}^{+}\left[\frac{4}{6}+\frac{4}{2} \cos 2 \omega t+\frac{1}{4} \cos ^{2} 2 \omega t\right] d t=\frac{1}{2} D A^{2} T \\
\Rightarrow & T \mu A^{4}\left[\frac{2}{4}+\frac{1}{8}\right]=\frac{\xi}{2} O A^{2} T \Rightarrow D=3 / 4 N A^{2} \\
\Rightarrow \quad & \left(-\omega^{2}+p^{2}+3 / 4 \mu A^{2}\right) A=k
\end{align*}
$$

b)

$$
\begin{align*}
& \ddot{i}+p^{2} x+\mu x^{3}=k \cos \omega t \\
& \ddot{x}_{0}^{\prime}+\ddot{u}+p^{2} x_{0}^{\prime}+p^{2} u+\mu(x_{0}^{3}+3 x_{0}^{2} u+\underbrace{\left.3 x_{0} u^{2}+u^{3}\right)}_{\text {small }}=\underbrace{\prime}_{/} / \cos ^{\prime} \omega t \\
& \Rightarrow \quad \underline{u}+\left(p^{2}+3 \mu x_{0}^{2}\right) u=0
\end{align*}
$$

c)

$$
\begin{aligned}
x_{0}: A \text { cos } \omega t & \Rightarrow \bar{u}^{+}+\left(p^{2}+3 N A^{2} \cos \omega t\right) u^{3} 0 \\
& \Rightarrow \quad \bar{u}+\left(p^{2}+3 / 2 \mu A^{2}+3 / 2 \mu A^{2} \cos 2 \omega t\right) u=0 \\
& \Rightarrow \frac{\ddot{u}+\left(p^{2}+\varepsilon \cos \Omega t\right) u^{3} 0}{0} \leftarrow \text { Mathicu equalion } \\
\rho^{2} & =p^{2}+3 / 2 \mu A^{2} \quad \varepsilon: 3 / 2 \mu A^{2} \quad \Omega: 2 \omega
\end{aligned}
$$

Fhrst osdes opproxination $\ddot{u}+\rho^{2} u=0 \Rightarrow u_{0}=A \cos p t$
Sccond ordes appoximation $\bar{u}_{1}+\rho^{2} u_{1}=-\varepsilon A \cos \Omega t \cos \rho t$

$$
=-\frac{C A}{2}[\cos (\Omega+P) t+\cos (\Omega-P) H]
$$

Resonank whin $\rho: \Omega+P \rightarrow$ nol a physical solution

$$
\text { or } p=\Omega-p \Rightarrow \quad \Omega^{\prime} 2 P
$$

In the prisent case $2 \omega=2 \sqrt{p^{2}+3 / 2 N A^{2}}$

$$
\Rightarrow \quad \omega \cdot \sqrt{p^{2}+3 / 2 N A^{2}}
$$

$[50 \%]$

4C7: Examiner's comments:

Q1 Spectral analysis of vehicle dynamics
No major conceptual difficulties were evident, and the question was generally answered well.

Q2 Circuit board impact and fatigue

Parts (a) and (b), concerning crossing-rates and the probability of impact, were well done. In Part (c), concerning fatigue damage, only one of the 17 students who attempted the question obtained the correct numerical answer. A common error was to use a Gaussian distribution for the stress peaks, instead of a Rayleigh distribution.

Q3 Limit cycle oscillations

Part (a) was very well done, but the detailed algebra (trigonometry) in section (b) defeated many students. Most students made a reasonable attempt at the phase plane portrait in Part (c), even if Part (b) had not been completed.

Q4 Mathieu equation

This was the least popular question (8 attempts), although the average mark was reasonably good (60%). Part (b) was not well done, which was surprising given that the target formula was given on the exam paper and the question involved a straight forward substitution followed by the neglect of small terms.

