2014115
Prof NA Fleck
crib for Paper 4C9

Q1. (a) $\sigma_{i j}$ is sties. $\sigma_{i j 1 j}=0$ states force equilibrium with body forces absent (including inetral forces).

$$
\sigma_{i j}=\lambda \delta_{i j} \varepsilon_{k k}+2 \mu \varepsilon_{i j}
$$

denotes isotropic linear elastiaty
$\varepsilon_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j i i}\right)$ is the small strain strain - displacement relation.

On the surface of body impose traction $t_{i}^{0}=\sigma_{i j} n_{j}$ on S_{1} and dinplecemants
$u_{i}=u_{i}$ on S_{u}.
(b)

$$
\varepsilon=\varepsilon_{1}+\varepsilon_{2}
$$

$$
\begin{aligned}
& \Rightarrow \quad \dot{\varepsilon}=\dot{\varepsilon}_{1}+\dot{\varepsilon}_{2}=\frac{\dot{\sigma}}{E}+\frac{\sigma}{\eta} \\
& \text { Now } \sigma=0 \text { for }+<0
\end{aligned}
$$

Now $\sigma=0$ for $t \leq 0$

$$
\dot{\varepsilon}=A \omega \cos \omega t=\frac{\dot{\sigma}}{E}+\frac{\sigma}{\eta} \text { for } t \geqslant 0
$$

Q1(b) contd.
CF: $\sigma=B \exp (-t / \tau)$
whee $\tau=\eta / E$

$$
\dot{\sigma}=-\frac{B}{\tau} \exp (-t / \tau)
$$

PI.: $\quad \sigma=C \cos (\omega t+\phi)$

$$
\begin{aligned}
\Rightarrow \dot{\sigma} & =-\omega C \sin (\omega t+\phi) \\
\frac{\dot{\theta}}{E}+\frac{\sigma}{\eta} & =-\frac{\omega c}{E} \sin (\omega t+\phi)+\frac{c}{\eta} \cos (\omega t+\phi) \\
& =\dot{\varepsilon}=\omega A \cos \omega t
\end{aligned}
$$

Aet: $\varepsilon=A \sin \omega t \Rightarrow \varepsilon(t)=\operatorname{Im}\left(A e^{i \omega t}\right)$

$$
\begin{aligned}
& \sigma=\operatorname{Im}\left(D e^{i \omega t}\right) \\
& \text { write } \sigma=D e^{i \omega t \cdot} \Leftrightarrow\left(\frac{i \omega D}{E}+\frac{D}{\eta}\right) e^{i \omega t}=A e^{i \omega t} \\
& \Rightarrow \frac{\sigma}{E}+\frac{\sigma}{\eta}=i \omega D e^{i \omega t} \\
& \Rightarrow \\
& \Rightarrow \\
& \Rightarrow \\
& \eta \\
& \Rightarrow \\
& \Rightarrow \\
&
\end{aligned}
$$

So $\sigma(t)$ lags $\varepsilon(t)$ by ϕ.

Q1.(b)

$$
\begin{aligned}
& \sigma(t)=B \exp (-t \mid \tau)+\operatorname{Im}\left[D e^{i \omega t}\right] \\
& \sigma(0)=0=B+\operatorname{Im}[D]=B-\frac{(\omega \tau)}{1+\omega^{2} \tau^{2}} \eta A
\end{aligned}
$$

So $B=\frac{\omega \tau}{1+\omega^{2} \tau^{2}} \eta A$

QI. ${ }^{\text {(}) ~} \quad \sigma_{e}+C \sigma_{h}-\sigma_{y} \leq 0 \quad$ and $\dot{\varepsilon}_{k K}^{p}=0$
The yeld surfue is pressure sensitive but plastic flow is incompressible.
Hence normally is not satisfied.
Diucher postulates imply convexity (which is satisfied) and normally (not satisfied).

Comment: First part of queshon was well done, the visco-elastivby part was more of a' challenge. Few untontrod the implecalvons of the normal to the y ied sw face.
$Q 2^{(a)^{(i)}}$

$$
\underline{a}=\nabla \times \nabla \phi
$$

Now $\nabla \phi=\phi_{i}, e_{i} \quad \underline{e}_{i}=\left(\underline{e_{1}}, \underline{e}_{2}, \underline{e}_{3}\right)$
Wite $\quad \underline{z}=\nabla \phi=b_{i} e_{i} \quad \Leftrightarrow \quad b_{i}=\phi_{2 i}$

$$
\begin{aligned}
& \underline{a}=\underline{\nabla} \times \underline{b}=\varepsilon_{i j k} b_{k, j} e_{i} \\
& \Rightarrow \quad \underline{a}=\varepsilon_{i j k} \phi, k_{j} \underline{e}_{i} \quad a_{i}=\varepsilon_{i j k} \phi_{, k_{j}}
\end{aligned}
$$

But $\varepsilon_{i j k}=-\varepsilon_{i k j}$ and $\phi_{i k j}=\phi_{i j k}$
Hence $a_{i} \equiv 0 \Leftrightarrow \nabla \times \nabla \phi=0$.
Q2(a) (ii)

$$
\begin{aligned}
f= & (\underline{a} \times \underline{b}) \cdot(\underline{c} \underline{d})=? \\
& \underline{a \times b}=\varepsilon_{i j k} a_{j} b_{k} \cdot e_{i} \\
& \leq x \underline{d}=\varepsilon_{i k} c_{j} d_{k} e_{i}=\varepsilon_{i p q} c_{p} d_{q} e_{i} \\
\Rightarrow & f=\varepsilon_{i j k} \varepsilon_{i p q}\left(a_{j} b_{k} c_{p} d q\right)
\end{aligned}
$$

Now, $\varepsilon_{i j k} \varepsilon_{i p q}=\delta_{j p} \delta_{k q}-\delta_{j q} \delta_{k p}$

$$
\begin{aligned}
\Rightarrow f & =a_{j} b_{k} c_{j} d_{k}-a_{j} b_{k} c_{k} d_{j} \\
& =(\underline{a} \cdot \underline{c})(\underline{b} \cdot \underline{d})-(\underline{a} \cdot \underline{d})(\underline{b} \cdot \underline{c})
\end{aligned}
$$

$$
\begin{aligned}
& Q_{2}^{(a)(i i i)} \frac{\partial \beta}{\partial A_{k l}}=\frac{2 A_{i j}}{\partial A_{k l}} A_{i j} \\
& A_{i j}=\delta_{i k} \delta_{j l} A_{k l} \Rightarrow \frac{\partial A_{i j}}{\partial A_{k l}}=\delta_{i k} \delta_{j l} \\
& \Rightarrow \frac{\partial \beta}{\partial A_{n l}}=2 A_{k l}
\end{aligned}
$$

Q2.(b) (1)

$$
u=\frac{v}{\sqrt{2}}
$$

Hodograph:

$$
\frac{F}{2} u=k w u\left(1+1+\frac{1}{2}+\frac{1}{2}\right) \Rightarrow F=6 k w
$$

(ii)

componest along V

$$
\left.\begin{array}{rl}
P V= & k\left(l_{a D} V_{a D}\right.
\end{array}+l_{A B} V_{A B}+l_{B C} V_{B C}\right)
$$

In part ii we had

$$
\begin{array}{ll}
\dot{w}^{p L}=6 k w u & \text { here } u=\frac{v}{\sqrt{2}} \\
\text { Now } \dot{w}^{p L}=6 k w u+k w u=7 k w u
\end{array}
$$

So, $\quad P v=7 \mathrm{kw} u=\frac{7}{\sqrt{2}} \mathrm{kw} v$

$$
\text { So } \quad P=\frac{7}{\sqrt{2}} k w
$$

This is greater. than part b (ii), So is a worse approximation to the actual solution.
serial candidates struggled with the tensor manipulation. Most coll exeat the upper bound method.

Q3. (a) sip lire frelds satiffy equibibrium in addition to kinemotics.
The upper bound method assumen a Lisinatvically adrissible field but usually violates equl birum.
When they coincide, the upper bound satiffes Dequilibrim.
Nerlher case ray be unique!

$$
\begin{aligned}
& \text { (b) (i) } \nabla^{4} \Phi=0 \quad\left[\begin{array}{l}
\frac{N o t e}{2} \text { 去 fabuated candralates } \nabla^{4} c \text { to obt onn } \\
E=-\frac{2}{3} A
\end{array}\right] \\
& \sigma_{y y}=\Phi, x x=\frac{A}{3} y^{3}+2 B x y+C y \\
& \sigma_{x x}=\Phi, y y=A x^{2} y+D y+E y^{3} \\
& \sigma_{x y}=-\Phi, x y=-A x y^{2}-B x^{2}-C x \\
& \nabla^{4} \Phi=\Phi, x x x x+2 \Phi_{, x x y y}+\Phi_{, y y y y} \equiv 0 \\
& \Rightarrow \quad 4 A y+6 E y=0 \\
& \Rightarrow E=-\frac{2}{3} A
\end{aligned}
$$

$\sigma_{y y}(y=h)=q_{1} \quad \quad \sigma_{y y}(y=-h)=q_{2}$
$\sigma_{x y}(y= \pm h)=0 \Rightarrow A x h^{2}+B x^{2}+C x=C$

$$
\Rightarrow\left(A h^{2}+C\right) x+B x^{2}=0
$$

$$
\Rightarrow B=0 \quad \text { and } \quad C=-A h^{2}
$$

Q3(b) (i)

$$
\begin{aligned}
& \sigma_{y y}(y=h)=\frac{A}{3} h^{3}+2 B x h+c h=q_{1} \\
& \sigma_{y y}(y=-h)=-\frac{A}{3} h^{3}-2 \beta x h-c h=q_{2}
\end{aligned}
$$

Hace $q_{1}=-q_{2}$, and $A=+\frac{3}{2} \frac{q_{2}}{h^{3}}$
(in)

$$
\begin{aligned}
& \sigma_{x x}=A x^{2} y+D y+E y^{3} \\
& \Rightarrow \sigma_{x x}=+\frac{3}{2} \frac{q_{2}}{h^{3}}\left(x^{2} y-\frac{2}{3} y^{3}\right)+D y \\
& \sigma_{x y}=A x y^{2}+C_{x} \\
& \Rightarrow \sigma_{x y}=+\frac{3}{2} \frac{q_{2}}{h^{3}}\left(x y^{2}-h^{2} x\right) \\
& \sigma_{y y}=\frac{A}{3} y^{3}+c y=+\frac{3}{2} \frac{q_{2}}{h^{3}}\left(y^{3}-h^{2} y\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (iii) } M=\int_{-h}^{h} y \sigma_{x x} d y=0 \\
& \Rightarrow \int_{-h}^{h}\left[\frac{3}{2} \frac{q_{2}}{h^{3}}\left(-\frac{2}{3} y^{3}\right)+D y\right] y d y=0 \\
& \Rightarrow-\frac{2}{5} q_{2} h^{3} h^{5}+\frac{2}{3} D h^{3}=0 \\
& \Rightarrow D=\frac{3}{5} \frac{q_{2}}{h}
\end{aligned}
$$

(iv) Shearforce $S=\int_{-h}^{h} \sigma_{x y} d y=0$.
[Most candisates were able to do thas.]

4C9 - Assessor's comments
Question 1.
The first part on basics of elasticity theory was poorly attempted by most, with glib answers. The second part on visco-elasticity theory led to few correct answers: this part involved solving a $1^{\text {st }}$ order differential equation. Most candidates knew the significance of Drucker's postulates, but none were able to check for normality in a correct manner.

Question 2.
The first part of the question was about standard tensor manipulations, and it was a surprise that the students found this difficult. The second part was about upper bound calculations and the candidates did this well.

Question 3.
A very popular question on upper bound versus slip line fields, and Airy stress function. Generally well done, and the main features of the Airy stress function were appreciated. Some did not use the fact that the stress function must satisfy the biharmonic equation.

