Mr A McRobie
2016, 4D10 Sfructiral Steclusin.
10). $533 \times 210 \times 122$ UB. 5275

$$
\begin{aligned}
\text { maj: } I_{x x} & =76040 \times 10^{-8} \mathrm{~m}^{4} \\
\min I_{y y} & =3388 \times 10^{-8} \mathrm{~m}^{4} \\
\operatorname{maj} Z_{p} & =3196 \times 10^{-6} \mathrm{~m}^{3} \\
J & =178 \times 10^{-8} \mathrm{~m}^{4} \\
A & =155 \times 10^{-4} \mathrm{~m}^{2}
\end{aligned}
$$

Compact? (DS4)
Ext. plate in compresion: $\frac{b}{E} \sqrt{\frac{\sigma_{4}}{355}}=\frac{(211.9-1277)}{2(21.3)} \sqrt{\frac{275}{355}}=411<8$ ok l
Int. plate in bedey $\quad \frac{b}{t} \sqrt{\frac{6 y}{355}}=\frac{544 \cdot 5-2(21.3)}{12 \cdot 7} \sqrt{\frac{275}{355}}=348<56$ ok \checkmark
(but $\geqslant 24 \frac{\text { in caprusion) }}{\text { (ned betor) }}$
\therefore Carpact for bending.
Cale. plantic:

$$
\begin{aligned}
M_{p 1, \ldots a j}=Z_{p} 6_{4} & =\left[3196 \times 10^{-6} \mathrm{~m}^{3}\right]\left[275 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\right] \\
& =878.9 \mathrm{kNm}
\end{aligned}
$$

Cale elatic

$$
\begin{aligned}
& \text { Baric }=\frac{\pi}{4} \sqrt{\frac{210 \times 10^{9}}{2.6}\left(178 \times 10^{-8}\right) 210 \times 10^{9}\left(3388 \times 10^{-8}\right)} \\
&=\frac{\pi}{4} \cdot 210 \times 10 \sqrt{\frac{(178) 6388)}{2.6}}=794.3 \mathrm{kNm} \\
& \Gamma=\frac{I D^{2}}{4}=\left(3388 \times 10^{-8}\right)\left(\frac{0.5232)^{2}}{4}=231.9 \times 10^{-8} \mathrm{~m}^{6}\right. \\
& D=544.5-21.3=523.2 \mathrm{~mm} \\
& 1+\frac{\pi^{2}}{L^{2}} \frac{E \Gamma}{45}=1+\frac{\pi^{2}}{4^{2}}(2.6) 231.9 \times 10^{-6}=3.089 \\
&=1.7576 \times 10^{-8} \\
& \sqrt{ }=M_{L T}, \text { BASTC }=794.3 \times 1.7576=1396 \mathrm{kWm}
\end{aligned}
$$

$4 D 10|a\rangle$ cont'd.

$$
\begin{aligned}
& C_{\text {unaqual }}=0.6 \quad \text { as } \psi=0=\frac{M_{\text {LT }}}{C_{\text {unaqel }}}=\frac{1396}{0.6}=2327 \mathrm{kN} \\
& M_{\text {Cr }}
\end{aligned}
$$

(D53)

Sansage: $\lambda=\sqrt{\frac{\text { Platic }}{\text { Elantic }}}=\sqrt{\frac{878.1}{2327}}=0.6146$
Which curve? $\quad \frac{h}{b}=\frac{544.5}{211.9}=2.57>2 \quad \therefore$ Curre b) (DS3)
Cume b), DSI $\rightarrow X=0.83$ C $\lambda=0.615$

$$
\begin{aligned}
& M_{\text {dergn }}=0.83(878.9)=729 \mathrm{kNm} \\
& M_{\text {apphed }}=\frac{W L}{4} \quad(L=8 \mathrm{~m}) \\
& \therefore 729 \mathrm{kSm}=\frac{W(8 \mathrm{~m})}{4} \Rightarrow W=\frac{729}{2}=365 \mathrm{WN}
\end{aligned}
$$

b) Beam column. Not compact for axial in web, so ignore part of web

$$
\lambda=34.8 \text { pent a) }>24 \Rightarrow K_{c}=0.8 \quad \text { (D54) }
$$

\therefore Ignore $\left(1-K_{L}\right)=0.2$ of the web.

$$
\therefore \text { Rednce area by }(0.2 \times 501.9) \times 12.7=1275 \mathrm{~mm}^{2}
$$

$$
\begin{aligned}
A_{\text {bati }} & =15,500 \mathrm{~mm}^{2} \\
A_{\text {off }} & =15,500-1275=14,225 \mathrm{~mm}^{2} \\
& =142.3 \times 10^{-4} \mathrm{~m}^{2}
\end{aligned}
$$

Axial: Calc platic:

$$
\begin{aligned}
N_{p l} & =\left(\frac{142.3 \times 10^{-4} \mathrm{~m}^{2}}{}\right)\left(275 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\right) \\
& =3912 \mathrm{kN}
\end{aligned}
$$

Calc. elartic $\left.N_{\text {el }}=\frac{\pi^{2} E I_{\text {min }}}{L^{2}}=\frac{\pi^{2}\left(210 \times 10^{9}\right)(3388}{16} \times 10^{-8}\right)\left(\mathrm{N} / \mathrm{m}^{2}\right) \mathrm{m}^{4}$ (Minor only, and no need to reduce Imonar due to non-compact web

1b) cont'd.

$$
\lambda=\sqrt{\frac{\text { Plartic }}{\text { Elutic }}}=\sqrt{\frac{3912}{4389}}=0.89
$$

Whach curve? $\quad \frac{h}{b}=2.57>1.2$

$$
\begin{aligned}
& \qquad\langle<40, \text { buedhin about } z-z, \text { (DS2) } \\
& \rightarrow X=0.66 \quad(D 51) \\
& \therefore \quad N_{\text {design }}=0.66(3912)=2582 \mathrm{kN} \\
& \therefore M_{\text {denign }}(\text { as per part a) })=729 \mathrm{kNm}
\end{aligned}
$$

$$
N_{\text {max }}=2582-2582\left(\frac{300}{729}\right)=1519 \mathrm{kN}
$$

$$
M=\sum_{i=1}^{N} F_{i} r_{i}
$$

Main assumption is the elastic ore, that $F_{i} \propto r_{i}$
so say $\quad F_{i}=k r_{i} \quad k=$ some concert.
Then $M=\sum_{i=1}^{N} F_{i} r_{i}=\sum_{i=1}^{N} k r_{i}^{2}=k \sum r_{i}^{2}$

$$
\therefore \quad h=\left(\frac{m}{\bar{r} r_{i}^{2}}\right)
$$

So $\quad F_{j}=k r_{j}=\frac{m_{r j}}{\overline{2 r_{i}^{2}}}=\frac{M}{2\left(r_{i}^{2} / r_{j}\right)}$

LTD10, 2016, 02.

$$
\left.=\left(x_{i}-\bar{x}\right)^{2}+y_{i}-\bar{y}\right)^{2}
$$

Bolt	x_{i}	y_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(y_{i}-\bar{y}\right)$	r_{i}^{2}	\tilde{j}
A	0	0.1	-0.2	-0.1	0.05	0.2236
B	0	0.4	-0.2	0.2	0.08	
C	0.4	0.4	0.2	0.2	0.08	-0.2828
D	0.2	0.1	0	-0.1	0.01	
E	0.4	0	0.2	-0.2	0.08	
$\sum=1$	$I=1$		$r_{1}^{2}=0.30$			

$$
\left.\begin{array}{rl}
A \bar{x}=\int x d A & \therefore \quad \bar{x}
\end{array}=1 / 5=0.29 \text { (} x_{i}\right) 1 . \quad \bar{y}=1 / 5=0.2
$$

\therefore Wont caser we bolts B, C, E due to momert.

\therefore Bolt B citical.

$$
\begin{aligned}
F_{\max } & =\frac{P_{e}}{\sum r_{i}^{2} / r_{\max }} \\
& =\frac{P(0.4)}{(0.30 / 0.2828)} \\
& =0.3771 \mathrm{P}
\end{aligned}
$$

Q2 b) contd

and $0.3771 \mathrm{P} /={\underset{\frac{0.3771}{\sqrt{2}} P}{(0.3771 / \sqrt{2})^{p}}}_{\boldsymbol{P}^{(2.2667 P}}^{0.26670}$

Resultant fire

$$
\begin{aligned}
& =\sqrt{(0.4667)^{2}+(0.2667)^{2}} \\
& =0.5375 \mathrm{P} .
\end{aligned}
$$

Max sher an M36 grade $8.8 \simeq 285 \mathrm{kN} \quad(D 55)$

$$
\begin{aligned}
\therefore \quad 0.5375 P & =285 \mathrm{kN} \\
\therefore \quad P & =\frac{285}{0.5375}=530 \mathrm{kN}
\end{aligned}
$$

[check bolt A, force is smaller (die to moment)
hut if aligns better.

$$
F_{A}=\frac{P e}{E_{i}^{2} / \operatorname{lnax}}=\frac{P(0.4)}{0.3 / 0.2236}
$$

$$
=0.2981 \mathrm{P} .
$$

$$
\int_{0.1333 \mathrm{P}}^{0.4666^{P}}\binom{\therefore \text { is }}{(\therefore \text { worse }}
$$

$4010(\cos t d)-$
Q2 b) Need to deer edge distances
Need to check plates in bearing at bolt hokes.
Need to chicle plates in shear
eg

4D10 Structural Steelwork, 2016.
Q3. a) Check compactness
Flange: $\begin{aligned} b & =200-12-10=178 \\ t & =12\end{aligned} \quad \frac{b}{b} \sqrt{\frac{275}{355}}=13.1<24 \therefore$ Compact in
Webs: $\begin{aligned} b & =1000-24=976 \\ t & =12\end{aligned} \quad \frac{b}{t} \sqrt{\frac{278}{355}}=71.5>56 \therefore$ Not compact in bending.

Stiffeners $\quad b=120$

$$
t=20
$$

$$
\frac{b}{t} \sqrt{\frac{275}{355}}=5.3<8 \quad \therefore \text { Complect. }
$$

(2 marks).
b). Smeared section

$$
h=\frac{(576)(12)+2(120)(20)}{576}=12+\frac{2(120)}{576}=20.3 \mathrm{~mm}
$$

$$
\begin{aligned}
I_{\text {maj }} & =\frac{2(576)(20.3)^{3}}{12}+2(576)(20.3)\left(500-\frac{20.3}{2}\right)^{2}+\frac{2(12)(1000)^{3}}{12} \\
& =803,000+5.611 \times 10^{9}+2 \times 10^{9} \\
& =7.612 \times 10^{9} \mathrm{~mm}^{4}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \xrightarrow[16]{\text { cole }} \\
& m=\frac{W L}{4}=\frac{(900)(16)}{4}=3600 \mathrm{kNm} \\
& \sigma=\frac{M y}{I}=\frac{\left(3600 \times 10^{2}\right)(0.5)}{7.612 \times 10^{-3}}=236 \mathrm{MPa}
\end{aligned}
$$

c)

Calc. Platic: $\quad N_{p t}=275 \mathrm{~N} / \mathrm{mm}^{2} \times 4800 \mathrm{~mm}^{2}=1320 \mathrm{kN}$
Calc. Elatic $\quad N_{\text {elas }}=\frac{\pi^{2} E I}{L^{2}}=\frac{\pi^{2}\left(210 \times 10^{3} \cdot 1 / \mathrm{mm}^{2}\right)\left(8.136 \times 10^{6} \mathrm{mm4}\right)}{(4000)^{2} \cdot \mathrm{~mm}^{2}}=1054 \mathrm{kN}$

$$
\begin{gathered}
\lambda=\sqrt{\frac{N_{\mu l}}{N_{\text {el }}}}=\sqrt{\frac{1320}{1054}}=1.12 \quad \text { Use cume c) }(\text { Weded }) \rightarrow X=0.47 \\
N_{\text {2esig2 }}=(0.47)(1320 \mathrm{kN})=620 \mathrm{kN}
\end{gathered}
$$

but require $\sim 6 A \approx\left(236 \mathrm{~N} / \mathrm{mm}^{2}\right)\left(4800 \mathrm{~mm}^{2}\right)=1132 \mathrm{kN}$
\therefore Not adequate
(Neod tu put in more cross-frames).

Q3 d).

$$
\text { Shear force }=\frac{W}{2}=450 \mathrm{kN}
$$

Sheer etess $\tau=\frac{450 \times 10^{3}}{2 \times 12 \times 976}=19.2 \mathrm{MPa}$

Strength:

$$
\begin{gathered}
6^{2} \leq 6_{y}^{2}-3 \tau^{2} \\
\therefore \quad \sqrt{6^{2}+3 \tau^{2}}<6 y ? \\
\sqrt{(230)^{2}+3(19.2)^{2}}=232<275 \mathrm{MPa}
\end{gathered}
$$

\therefore stayth OK.
Stability

$$
\lambda=71.5 \quad(\text { part } a) .
$$

$$
\begin{aligned}
& \sigma_{c}=0 \\
& \sigma_{b}=230 \mathrm{MPa}, \quad \lambda=71.5 \rightarrow \quad K_{b}=1.1 \quad \text { (D54) } \\
& \tau=19.2 \mathrm{mP}, \quad \phi=4 / 1 \geqslant 3, \lambda=71.5 \rightarrow K_{q}=0.74 \text { (D54) } \\
& \frac{0}{275}+\left(\frac{230}{1.1(275)}\right)^{2}+\left(\frac{19.2}{0.74(275 / \sqrt{3})}\right)^{2} \\
& 0
\end{aligned}
$$

\therefore Stablut OK

QB.
d) Conundrum? (Not needed for exam).

Soy we odd a stiffener at the midheight of each wees [-] We now have to check the top half of the panel.

$\sigma_{c}=115 \mathrm{MPa}, \quad \lambda=\frac{458}{12} \sqrt{\frac{275}{355}}=35.8 \geqslant 24 \therefore$ Not lompoc in compression

$$
\rightarrow K_{c}=0.8 \quad D S G
$$

$$
\begin{array}{ll}
\sigma_{b}=115 \mathrm{MPa} \quad \lambda=35.8=56 \quad & \therefore \text { Coupout in compression } . \\
\tau=14.2 \mathrm{MPa}, & \rightarrow K_{b}=1.2 \mathrm{DS} 4 \\
\tau=\frac{4}{0.5}=8 \geqslant 3, \quad \lambda=35.8 \rightarrow K_{q}=1
\end{array}
$$

Stability:

$$
\begin{aligned}
& \quad \frac{115}{0.8(275)}+\left(\frac{115}{1.2(275)}\right)^{2}+\left(\frac{19.2}{1(159)}\right)^{2} \\
& =0.52+0.12+0.01=0.66<1 \quad \therefore 0 K
\end{aligned}
$$

(ie. it is still $O K$).
$4 D 10 \quad 2016$
Q4:

a). Loads.

$$
\begin{aligned}
& \text { Conerete }=3 \mathrm{~m} \times 0.1 \mathrm{~m} \times(2400 \times 9.81) \mathrm{kN} / \mathrm{m}^{3}=7.06 \mathrm{kN} / \mathrm{m} . \\
& \text { steel: } 457 \times 152 \times(67) \quad 67.2 \times 9.81=659 \mathrm{~N} / \mathrm{m}=\frac{0.66 \mathrm{kN} / \mathrm{m}}{7.72 \mathrm{kN} / \mathrm{m}}
\end{aligned}
$$

$$
3 \text { kPa permant servees } \times 3 \mathrm{M} \rightarrow \quad 9 \text { kN/m }
$$

$16.72 \mathrm{ki} / \mathrm{m}$ permarect
7 kik linelued $\times 3 \mathrm{~m} \rightarrow \quad 21 \mathrm{wN} / \mathrm{m}$ tine

Assume N / A in concrete, a depth x_{p} below top sufface
Axid equilis: $\quad A_{s} \sigma_{y}=0.6 f_{c d} b_{e} x_{p}$

$$
A_{s}=856 \times 10^{2} \mathrm{~mm}^{2}
$$

$\sigma_{y}=355 \mathrm{MPa} \quad$ Cchech compactinens
flenges $\quad \frac{b}{t} \sqrt{ }=\frac{(153.8-9)}{2(15)}=4.8<8$ oK.
web $\quad \frac{b}{t} \sqrt{1}=\frac{458-2(15)}{9}=47<56$ OK for berding Not de por esppresion
(but t's in Tension - bedij, so OK).

$$
\begin{aligned}
& \text { Total factored }=1.35(16.72
\end{aligned}
$$

$$
\begin{aligned}
& M_{\text {rax }}=\frac{\omega 12}{8}=(54.26)=\frac{10)^{2}}{(10.3 \mathrm{kNM}}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { Q4a) cant'd } & & {\left[\mathrm{mm}^{2}\right.} & {[86} \\
x_{p} & =\frac{(8560)(355) \mathrm{N} / \mathrm{ma}^{2}}{0.6\left(30 \mathrm{~N} / \mathrm{ma}^{2}\right)(2500 \mathrm{~mm})} & \quad \therefore 355=3039 \\
& =67.5 \mathrm{~mm} \quad<75 \mathrm{~mm} & \therefore \text { lu concrete. } V .
\end{array}
$$

\therefore Vey adquate $-\left(\begin{array}{c}678 \mathrm{hmm}) \\ \mathrm{raq}\end{array}\right.$
b) reg
Shew strats $100 \times 25 \mathrm{~mm} . \rightarrow 154 \mathrm{kN}$ each Ds6

$$
\begin{aligned}
& \text { Axid furce }=3039 \\
& \rightarrow 20 \text { studs por hall spen } \\
& \rightarrow 40 \text { stads fotal. } \\
& \text { Spain }=\frac{10 \mathrm{~m}}{40}=0.25 \mathrm{~m} .
\end{aligned}
$$

Could Lpained stans $\rightarrow 80 \% \rightarrow$ Butino...)
\therefore May as well put suigle stad in each Fough,
$\rightarrow 200 \mathrm{~mm}$ spacing.
c). Shat term deflection.

$$
\text { Load }=7 \mathrm{kPa} \times 3=21 \mathrm{kN} / \mathrm{m} \text {. }
$$

Need EI:
Modular rato. $E_{c}=28 \mathrm{Gia}$ (shat term) D56

$$
\frac{5 p a n}{250}=40 \mathrm{~mm}
$$

$14 \mathrm{~mm}<40 \mathrm{~mm}$
$\therefore 0 K$

$$
\begin{aligned}
& A \bar{x}=\int x d A= \\
& {[(33 \times 75)+8560] \bar{x}=333 \times 75 \times \frac{75}{2}+8560\left[\frac{\left.125+\frac{458}{2}\right]}{}\right]} \\
& =936.6 \times 10^{3}+3030 \times 10^{3} \\
& 33.5 \times 10^{3} \quad \bar{x}=3967 \times 0^{3} \\
& \bar{x}=118 \mathrm{~mm} \\
& I=\frac{(333)(75)^{3}}{12}+(333)(75)\left[118-\frac{75}{2}\right]^{2}+28930 \times 10^{4}+8560 \times[h]^{2} \\
& h=\frac{458}{2}+125-118 \\
& =236 \\
& =11.7 \times 10^{6}+1618 \times 10^{6}+289.3 \times 10^{6}+476.7 \times 10^{6} \\
& =939.4 \times 10^{6} \mathrm{~mm}^{4}=939.4 \times 10^{-6} \mathrm{my}^{4} \\
& \Delta=\frac{S_{W L 4}^{4}}{384 E I}=5 \frac{\left(21 \times 10^{3}\right)(10)^{4}}{384\left(210 \times 10^{9}\right)\left(939.4 \times 10^{-6}\right)}=14 \mathrm{~mm} .
\end{aligned}
$$

